
Kishoge Part 10 Application

Site 3 - Infrastructure Design Report

KSG3-DBFL-XX-XX-RP-C-0001

March 2025

Engineering Sustainable Futures

Project Title:	Kishoge Part 10 Application		
Document Title:	Site 3 - Infrastructure Design Report		
File Ref:	KSG3-DBFL-XX-XX-RP-C-0001		
Status:	P3 - Planning	Rev:	2
	S - Issued		_

Status	Rev.	Date	Description	Prepared	Reviewed	Approved
P1	0	24/02/25	Draft Planning Issue	Darren Richardson	Dieter Bester	John Carr
P3	0	24/03/25	Issued for Planning	Darren Richardson	Dieter Bester	John Carr
P3	1	25/03/25	Issued for Planning	Darren Richardson	Dieter Bester	John Carr
P3	2	26/03/25	Issued for Planning	Darren Richardson	Dieter Bester	John Carr

Disclaimer

This document has been prepared for the exclusive use of our Client and unless otherwise agreed in writing with DBFL Consulting Engineers no other party may use, make use of or rely on the contents of this document. The document has been compiled using the resources agreed with the Client and in accordance with the agreed scope of work. DBFL Consulting Engineers accepts no responsibility or liability for any use that is made of this document other than for the purposes for which it was originally commissioned and prepared, including by any third party or use by others of opinions or data contained in this document. DBFL Consulting Engineers accepts no information supplied by others and contained within this report. It is expressly stated that no independent verification of any documents or information supplied by others for this document has been made. DBFL Consulting Engineers has used reasonable skill, care and diligence in compiling this document and no warranty is provided as to the report's accuracy.

Copyright

The contents and format of this report are subject to copyright owned by DBFL Consulting Engineers unless that copyright has been legally assigned by us to another party or is used by DBFL Consulting Engineers under licence. This report may not be copied or used for any purpose other than the intended purpose.

Contents

1	INT	RODUCTION	5
	1.1	Background	5
	1.2	Objectives	6
	1.3	Location	6
	1.4	Topography	7
	1.5	Proposed Development	8
	1.6	Existing Ground Conditions	9
2	AC	CESS & ROADS	11
	2.1	Overall Road and Access Layout	11
	2.2	Pavement Design Standards	13
	2.3	Vehicle Tracking	13
	2.4	Parking Strategy	13
	2.5	Road Safety Audit	14
3	SU	RFACE WATER DRAINAGE	15
	3.1	Existing Drainage	15
	3.2	Surface Water Drainage Strategy	15
	3.2	.1 Bioretention Areas / Rain Gardens	16
	3.2	.2 Permeable Paving	17
	3.2	.3 Tree Pits	18
	3.3	Attenuation & Drainage	19
	3.3	.1 Compliance with Attenuation Design	22
	3.4	Design Standards	22
	3.5	Climate Change	23
	3.6	Pluvial Flooding Provision	24
	3.7	Surface Water Quality Provision	24

	3.8	Flood R	isk Assessment
	3.9	Flood E	xceedance
4	FOL	JL DRAI	NAGE
	4.1	Existing	g Foul Drainage
	4.2	Design	Strategy
	4.3	Design	Criteria
	4.4	Compli	ance with Irish Water Standards
	4.5	Compli	ance with Clonburris Water and Wastewater Report
	4.6	Design	Calculations
5	WA	TER SUF	PPLY AND DISTRIBUTION
	5.1	Existing	g Water Supply
	5.2	Develo	pment Water Main Layout
	5.3	Compli	ance with Irish Water Standards 40
	5.4	Compli	ance with Clonburris Water and Wastewater Report40
	5.5	Design	Calculations
	ppenc IODUL	dix A : _E]	SURFACE WATER NETWORK CALCULATIONS [MICRO-DRAINAGE NETWORK A
A	ppenc	dix B :	FOUL SEWER NETWORK CALCULATIONS [MICRO-DRAINAGE NETWORK MODULE] B
A	ppenc	dix C :	UISCE ÉIREANN CONFIRMATION OF FEASIBILITYC
A	ppenc	dix D :	STAGE 1 ROAD SAFETY AUDITD
A	ppenc	dix E :	SITE INVESTIGATIONC
A	ppenc	dix F :	UISCE ÉIREANN STATEMENT of DESIGN ACCEPTANCED

Figures

Figure 1.1 Subject Site within Clonburris SDZ	. 5
Figure 1.2 Subject Site showing link to Clonburris Northern Link Street works	.7
Figure 1.3 Topographical Elevation Heat Map	. 8
Figure 2.1 Kishoge Site 3 Movement Concept and Roads Hierarchy	12
Figure 2.2 Clonburris SDZ Example Local Streets	12
Figure 3.1 Existing Clonburris SDZ Field Drainage	15
Figure 3.2 Kishoge Site 3 Surface Water Sub-Catchments	20
Figure 3.3 Extract of CFRAMS Data from OPW FloodInfo.ie	25
Figure 3.4 Extract of ICPSS Data from OPW FloodInfo.ie	26
Figure 3.5 Proposed Overland Flood Routing	27
Figure 3.6 Overall Clonburris Surface Water Catchment Map	28
Figure 3.7 Proposed Site within Clonburris Surface Water Catchment Plan	29
Figure 4.1 Kishoge Site 3 Foul Water Sub-Catchments	33
Figure 4.2 Clonburris SDZ Foul Water Catchment Zones & Pumping Stations	35
Figure 4.3 Site within SDZ Foul Catchment Zones	36
Figure 5.1 Irish Water Strategic Watermain Plan around Clonburris SDZ	39
Figure 5.2 Clonburris SDZ District Water Metering Strategy	40

Tables

Table 3.1 Surface Water Catchments Effective Areas	21
Table 3.2 Extract from Clonburris SWMP Summary Table	22
Table 4.1 Development Details for Clonburris SDZ Foul Catchments	35
Table 4.2 Predicted Kishoge Site 3 Foul Catchment A Calculations	37
Table 4.3 Predicted Kishoge Site 3 Foul Catchment B Calculations	38
Table 5.1 Clonburris SDZ Water Demand Summary	41
Table 5.2 Predicted Kishoge Site 3 Water Calculations	42

1 INTRODUCTION

1.1 Background

This infrastructure design report has been prepared by DBFL Consulting Engineers for the planning application for the Kishoge Site 3 development. The proposed development is part of the Clonburris Strategic Development Zone (SDZ) within the administrative area of South Dublin County Council (SDCC).

The proposed development is located within Development Area: Kishoge North-West (Sub-Sectors KNW-S1, KNW-S2, KNW-S3) and Development Area 6: Kishoge Urban Centre (KUC-S1) within the SDZ, as indicated in Figure 1.1. The overall KNW comprises of sub-sectors that will be primarily low to medium density residential areas, while KUC-S1 to the southeast will be medium to high density mixed use, retail community and residential areas.

The proposed development will benefit from the trunk infrastructure proposed as part of the Clonburris Infrastructure Development for which planning has been granted in February 2025 under planning reference SDZ24A/0033W. The Clonburris Northern Link Street (NLS) includes trunk road, drainage, watermain and utility infrastructure to serve the Clonburris Strategic Development Zone lands to the north of the Kildare/Cork Railway line which includes the subject site.

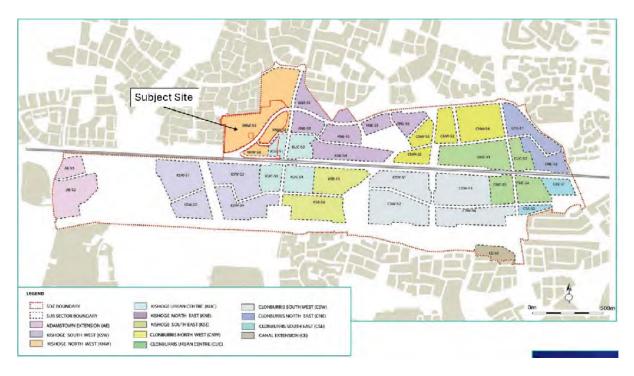


Figure 1.1 Subject Site within Clonburris SDZ

1.2 Objectives

This report aims to consider the proposed development main infrastructure elements, including the following:

- Road layout / Site access.
- Surface water servicing and strategy.
- Foul sewer servicing and strategy.
- Water supply and servicing.
- Flood risk

1.3 Location

The overall Clonburris SDZ lands, of approximately 280 Ha, is located to the west of Dublin City Centre and the M50, between the N4 and N7 national primary routes. The Kildare/Cork Railway line bisects the SDZ lands centrally and the Grand Canal forms the southern boundary.

The subject site for this application is situated in the northern area of the SDZ lands to the north of the Kildare/Cork Railway line. Adamstown Avenue, which connects to Thomas Omer Way to the East, bisects the subject site, while the Grange Castle Road (R136) is situated immediately adjacent to the east of the subject site. The permitted Clonburris Northern Link Street (NLS) which links Adamstown Avenue to Ninth Lock Road will provide access to the southeast part of the subject site, while the northwestern part of the site will be accessed via Adamstown Avenue. The Adamstown SDZ is located to the northwest of the subject site. See Figure 1.2 below for the site locality plan.

The proposed Clonburris Northern Link Street (NLS), for which planning has been granted in February 2025, runs through the southeast of the proposed development.

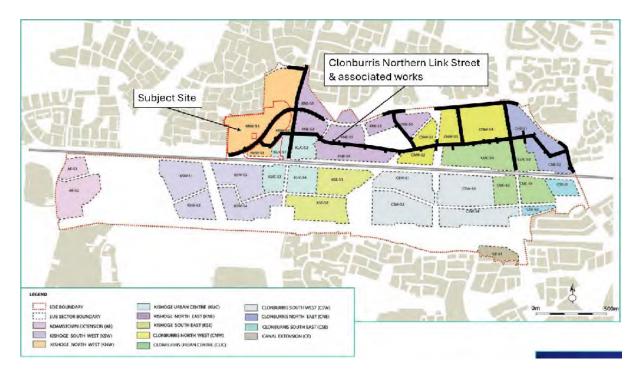


Figure 1.2 Subject Site showing link to Clonburris Northern Link Street works

1.4 Topography

Overall, the topography of the site is relatively flat throughout. There is a general fall from southeast to northwest across the site as displayed in Figure 1.3 below.

The existing site levels to the northwest of Adamstown Avenue generally ranges between 55.50m AOD to 58.00m AOD. An existing vegetated embankment forming a boundary between the northeast section of the site and Adamstown Avenue reaches a maximum level of 60.50m AOD.

The existing site levels to the southeast of Adamstown Avenue generally ranges between 57.50 to 60.00m AOD. There are two soil mounds in the southeast section with a maximum level of 62.50m AOD. An existing vegetated embankment with forms a boundary between the east of the site and Grange Castle Road reaches a maximum level of 67.00m AOD.

A topographical survey is provided as a background to the layout drawings issued with this report to indicate the natural ground levels of the site.

Figure 1.3 Topographical Elevation Heat Map

1.5 Proposed Development

The proposed development comprises 580no. residential units in a mix of house, apartment, duplex and triplex units comprising 1-bedroom, 2-bedroom and 3-bedroom typologies; 2-storey childcare facility; All associated and ancillary site development and infrastructural works including

surface level car parking, bicycle parking, hard and soft landscaping and boundary treatment works, including public, communal and private open space, public lighting, bin stores and foul and water services. Vehicular access to the site will be from Adamstown Avenue and the Northern Link Street, proposed under concurrent application Reg. Ref. SDZ24A/0033W.

1.6 Existing Ground Conditions

A site investigation was undertaken by IGSL to ascertain the existing ground conditions. The detailed investigation attached as Appendix E included the following:

- Carry out 29 no. Trial Pits to a maximum depth of 3.40m BGL.
- Carry out 7 no. Soakaways to determine a soil infiltration value to BRE digest 365.
- Carry out 21 no. Plate Bearing Tests to determine the modulus of subgrade reaction and equivalent CBR values.
- Carry out 6 no. Rotary Core Boreholes to be a maximum depth of 7.50 BGL.
- Carry out 29 no. Slit Trenches to ascertain the location of existing underground services.
- Groundwater Monitoring
- Geotechnical & Environmental Laboratory testing.
- Report with recommendations.

The sequence of strata encountered were relatively consistent across site and comprised of:

Made Ground:

Made Ground deposits were occasionally encountered beneath the topsoil or on the surface of exploratory pits to the northwest of Adamstown Avenue and were present to a maximum depth of 2.50m BGL. These deposits can be described generally as *'Dark brown or dark grey sandy gravelly CLAY with occasional cobble content and organic matter, occasional plastic and steel, rare fragments of concrete blocks and rubbish'.*

Made Ground deposits were encountered in all but one of exploratory pits to the southeast of Adamstown Avenue. There were variable thicknesses of Made Ground exposed during pitting. Overall, the generally CLAY soil contained rare plastic/rubbish, wood, red brick and concrete fragments and cobbles and boulders.

Topsoil:

Topsoil was encountered in all the exploratory holes except TP12, TP13, TP23, TP25, TP26 and TP27. Where naturally occurring topsoil was unearthed, it was found to be present in layers

ranging from 200mm to 450mm thick. A gradational lower transition was present whereby the topsoil was underlain by a SILT/CLAY subsoil, almost devoid of gravel.

Glacial Deposits:

A fine-grained light brown occasionally mottled orange-brown SILT/CLAY subsoil layer, generally firm in consistency, was found underlying the topsoil. Occasionally this was noted as firm to stiff with grey-brown mottling also observed.

Where indigenous deposits were encountered, the soils increased in strength to stiff and were found to contain an increasing gravel-sized clast content with depth. Colour change to grey was observed with depth.

A stiff dark grey layer completed many of the pits. This was increasingly gravelly, with angular cobble and boulder-sized fragments frequently noted. Towards the base of this layer, the increased volume of angular tabular and platy material caused the layer to be described as a "Possible Weathered Rockhead" horizon. This was noted in six of the twenty-nine pits namely TP05, 06, 07 and 08 as well as TP16 and TP21.

Bedrock:

Rotary drilling revealed bedrock at depths ranging 2.30m to 2.70m north of Adamstown Avenue with rock coring commencing at the deeper depths of 4.30m and 4.50m south of the Avenue. However, in both RC05 and RC06 south of the roadway, a layer of "clayey COBBLES" was intercepted shy of rock. This may well be a layer of weathered rock.

2 ACCESS & ROADS

2.1 Overall Road and Access Layout

The overall road and access layout is in accordance with requirements defined in the Clonburris SDZ planning scheme.

The proposed development will be accessed from Adamstown Avenue and the Clonburris Northern Link Street (NLS). The northwestern part of the development will be accessed via Adamstown Avenue. The southeast will be accessed from the NLS, for which planning has been granted in February 2025. The NLS can be accessed via Adamstown Avenue to the west and Grange Castle Road to the east.

The NLS includes minor priority-controlled junctions along the street alignment to provide access to future development cells within the Clonburris SDZ including the subject site. The NLS within the subject site's boundary is to have 2 controlled pedestrian crossings.

The subject sites internal road layout has been designed with a number of junctions throughout the development with appropriate traffic calming measures, including raised tables and speed humps.

Filtered priority junctions have been incorporated at key locations to prioritise pedestrian and cyclist movements.

The proposed road hierarchy and typologies are generally consistent with those set out in section 7 of the Clonburris 'Transport Assessment & Transport Strategy' and in section 2.2.4 of Clonburris SDZ as shown in Figure 2.1 below. Generally, the proposed Local Streets will be 5.5m wide and the proposed Intimate Local Streets (homezones) will be 4.8m wide, with a 2.5m wide footpath on either side of the road. The development's internal layout has been designed to incorporate flat top table ramps at strategic locations to calm traffic at junctions. Long straight sections of road have been avoided where possible with bends in the road introduced to further act as traffic calming measures. Design speed limits of 30km/hr are applied throughout the development as per the Design Manual for Urban Roads and Streets (DMURS).

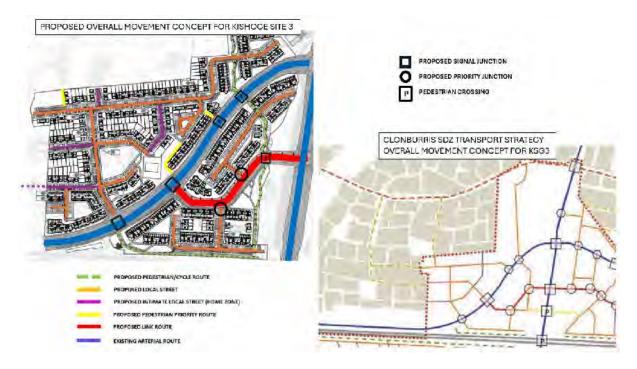
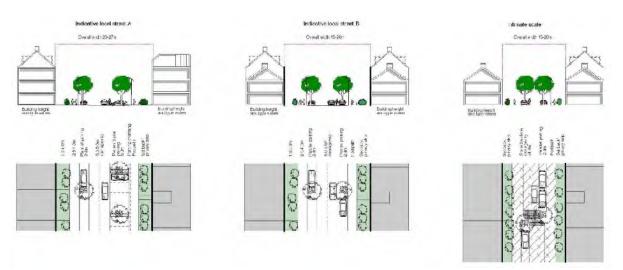



Figure 2.1 Kishoge Site 3 Movement Concept and Roads Hierarchy

The proposed street dimensions are designed in compliance with the Clonburris SDZ. Local streets are suggested to have a 5.0-5.5m wide carriageway with 2.4m parallel parking bays and 2.5-4.0m wide footpaths. Intimate local streets are suggested to have a maximum 4.8m wide shared surface carriageway with footpaths of no explicit dimensions indicated. Figure 2.2 from the SDZ illustrates example local streets including homezones.

Figure 2.2 Clonburris SDZ Example Local Streets

The proposed development's road layouts are shown on drawing KSG3-DBFL-95-XX-DR-C-1201. The standard road cross-sections and construction details are shown on drawings KSG3-DBFL-95-XX-DR-C-5201 to 5204 and comprise the following:

- Local Streets typically 5.5m wide carriageway with 2.5m footways and intermittent 2.5m wide private parking bays. Where required, to accommodate perpendicular parking space, the road width has been increased for sufficient vehicle manoeuvrability.
- Intimate Local Street / Home-Zone Streets 4.8m wide homezone street with 2.5m footways and intermittent 2.5m wide parking bays. Road surfaces are to be in a different colour contrast and texture to Local Streets.

Corner radii of 3m are generally provided within the local streets, with the exception of certain turning heads which have larger corner radii to accommodate refuse and fire tender vehicles.

A Stage 1 Road Safety Audit has been conducted on the proposed roads layout as attached in Appendix A.

2.2 Pavement Design Standards

The main internal roads are designed in accordance with the Design Manual for Urban Roads and Streets (DMURS) and Local Authority taking in charge requirements. A 100mm high kerb separation is proposed between typical roads and footpaths. Refer to drawings KSG3-DBFL-95-XX-DR-C-5201 to 5204 for the proposed road construction details. Proposed capping for the roads is based on the SI investigation and CBRs will be taken on site to determine where additional capping will be required due to soft spots.

2.3 Vehicle Tracking

The proposed development has been tracked to show that the development's proposed streets and turning heads will accommodate a large refuse vehicle as shown on drawing KSG3-DBFL-95-XX-DR-C-1201. Refuse staging areas have been indicated on these drawings indicatively and reflect the proposed refuse collection areas of the refuse collection strategy.

2.4 Parking Strategy

Perpendicular parking bays are set to accommodate a targeted maximum 1:20 longitudinal gradient. Parallel parking bays have been designed to have a 1:40 crossfall (maximum 1:21) towards the carriageway to allow for excess surface water runoff to be routed to the catchpits provided. All parking bays are permeable paving to be maintained by an appointed management company.

All perpendicular parking spaces have been designed to allow for a minimum of 6m reverse manoeuvre space. Perpendicular parking bays will be 5.5m length on local streets, with none proposed on homezone streets. Parallel spaces will be 2.5m to allow sufficient space for parking.

For further details of the vehicle and cycle parking provided for the proposed development, refer to Chapter 14 of the EIAR.

2.5 Road Safety Audit

The Stage 1 Road Safety Audit was conducted for the subject site and completed in January 2025. The full Stage 1 Road Safety Audit is provided in Appendix D.

3 SURFACE WATER DRAINAGE

3.1 Existing Drainage

Overall, the topography of the site is relatively flat throughout. There is a general fall from southeast to northwest across the site as displayed in Figure 3.1.

The existing site is relatively flat throughout with a general existing fall from southeast to northwest across the site. Existing 225mm surface water drains run along either side of Adamstown Avenue. There are no existing significant field drains within the subject site boundary. Additional detail on existing drainage within the Clonburris SDZ is provided in the Clonburris SWMP.

Figure 3.1 Existing Clonburris SDZ Field Drainage

3.2 Surface Water Drainage Strategy

In accordance with the GDSDS it is proposed to use Sustainable Urban Drainage systems (SuDS) for managing stormwater for the proposed development along with traditional storm drainage networks. The aim of the SuDS strategy for the site will be to:

- Attenuate storm-water runoff.
- Reduce storm-water runoff.
- Reduce pollution impact.
- Replicate the natural characteristics of rainfall runoff for the site.

• Recharge the groundwater profile.

The proposed layout of the drainage and SuDS is detailed on drawing KSG3-DBFL-94-XX-DR-C-1311.

The Surface Water Management Plan (SWMP) agreed with SDCC includes several potential SuDS features to be implemented on individual sites within the SDZ. The following SuDS features are incorporated into the design for the subject site:

3.2.1 Bioretention Areas / Rain Gardens

Where possible, Bioretention areas have been implemented into the design as shown on drawing KSG3-DBFL-94-XX-DR-C-1311. Surface water generated from the adjacent roads and footpaths will discharge directly to these SuDS features via inlet kerbs detailed on drawing KSG3-DBFL-94-XX-DR-C-5303.

Water Quality

Surface water runoff from the adjacent roads/roofs is conveyed to the bioretention area which routes any surface water that has not infiltrated naturally into the ground or absorbed by the vegetation, to the surface water pipe network to be attenuated in the regional attenuation basins.

The build-up of the bioretention consists of a filter medium, a transition layer and a drainage layer as detailed on drawing KSG3-DBFL-94-XX-DR-C-5303. The min 150mm free draining topsoil on top of a min 50mm sharp sand layer will filter out pollutants and provide natural surface water flow control. The min 50mm grit transition layer prevents fine filter medium from entering the drainage layer. The 750mm drainage layer retains the surface water after it has filtered through the bioretention area build-up. The grated manholes will act as an overflow inlet from where the overflowed surface water is discharged into the surface water pipe network.

Storage Volume

The bioretention area build-up contributes to the local surface water storage volume, serving as a natural surface water source control.

Biodiversity

The bioretention areas will contribute to the biodiversity of the proposed development by adding habitat for wildlife. See the landscape architect drawings for further details on specific plants proposed in the bioretention areas.

Amenity

The bioretention areas are generally proposed along roads to receive runoff from adjacent roads and will contribute to aesthetics of the streetscape. Local bioretention areas are also proposed within the detention basins to receive surface water runoff from nearby roads to create local "wet" areas. This will encourage the growth of plants proposed in these areas, further adding to the biodiversity of the development and create enjoyable and aesthetically pleasing public open space areas.

3.2.2 Permeable Paving

The proposed design includes permeable finishes on all parking bays within the development as shown on drawing KSG3-DBFL-94-XX-DR-C-1311. Surface water runoff from the paved areas and from the house/duplex roofs is intercepted by the permeable build-up of the paved areas where it is intended to naturally infiltrate into the ground. If the porous build-up of the paving and the in-situ material beneath becomes saturated, surface water would drain overland and into the surface water pipe network.

Water Quality

Permeable paving reduces pollutants such as petrol and diesel as it contributes to its biodegrading process. It also assists in filtering solid particles out of surface water runoff, providing filtration before discharge into the surface water pipe network and ultimately the receiving watercourse. The build-up of the permeable paving is shown on drawings KSG3-DBFL-95-XX-DR-C-5203 to 5204.

Storage Volume

The permeable pavement build-up of the parking areas for the development is 500mm thick and has a 0.3 void ratio. This adds a significant amount of local surface water storage to the development before the eventual discharge into the regional attenuation structures, while adding further opportunity for groundwater infiltration.

Biodiversity

Permeable paving does not directly contribute to the biodiversity of the development, but the surface water treatment it provides maximises the biodiversity in the downstream watercourses at the discharge point.

Amenity

Permeable paving provides amenity in its functionality as it can be used for a range of activities, while also acting as a valuable component in the surface water treatment and storage train.

3.2.3 Tree Pits

Tree Pits are proposed to intercept road runoff throughout the entire development. Two types of Proposed SuDS tree pits are shown on drawing KSG3-DBFL-94-XX-DR-C-1311. Tree pits in local streets are generally placed behind the back of the footpath and intercept road runoff via a road gully with an overflow to the surface water pipe network. Tree pits in home zone areas are slightly lowered below the road surface to allow surface water to be directly intercepted at the base of the tree pit and infiltrate down to the tree root system. Once the tree pit is saturated, water would be routed to the surface water pipe network through an overflow as detailed on drawing KSG3-DBFL-94-XX-DR-C-5304.

Water Quality

Surface Water runoff will be filtered through the soil surrounding the tree root ball, removing pollutants. Pollutants are also naturally broken down during the transpiration process. This filtration process results in surface water with less pollutants being discharged into the surface water pipe network end the eventual receiving waters.

Storage Volume

The base of the tree pit provides storage within the porous soil and drainage layers, allowing for natural infiltration into the ground and absorption by the tree roots, reducing the amount of surface water discharged into the surface water pipe network via overflow pipes.

Biodiversity

The addition of SuDS on-street trees will increase the habitat for a variety of animal species and insects and act as bridge for wildlife in the post-developed urban landscape. Filtered water passing through the tree pit and into the receiving watercourse would also add to the biodiversity downstream. See the landscape architect detail for proposed species of the street trees.

Amenity

The street trees will add significant amenity benefits such as improving the aesthetics of the urban landscape. The canopies of the trees will also provide a cooling effect in the post developed streetscape.

3.3 Attenuation & Drainage

According to the overall Clonburris Surface Water Management Plan (SWMP), the majority of the proposed development site falls within SDZ surface water catchment with a portion of the proposed site to the northwest lying within a separate catchment discharging to separate existing infrastructure to the northwest.

The proposed site has been designed with 2no. separate surface water catchments. Catchment A outfalls to the existing OldBridge network. Catchment B outfalls into the separately proposed NLS works trunk sewer (Note – for the purpose of calculations, Catchment B has been split into 6no. segments for each connection point to the NLS trunk sewer). See Figure 3.2 below showing proposed surface water network and outfall points within Catchment A and Catchment B.

The proposed development within surface water Catchment A has 2no. local attenuation ponds with an allowable discharge of 15.35 l/s. The surface water from Catchment A will eventually discharge into OldBridge storm outfall with a maximum outflow of 14.5 l/s. (Figure 3.2 shows an overview of proposed surface water catchments).

Surface water Catchment B contains a local attenuation pond which discharges into the future NLS trunk storm network and finally discharging to the regional attenuation ATN 03.

Attenuation ATN 03 is an open attenuation pond providing a maximum storage capacity of 5100m³ required for a 100-year storm for the subject site and other lands within surface water Catchment 1 of the SDZ.

Surface water from ATN 03 will continue to flow and discharge into the Griffeen River (See Figure 3.6 and Figure 3.7).

The drainage and attenuation systems for the NLS works have been approved under planning reference SDZ24A/0033W. Minor amendments to the plan footprints permitted under SDZ24A/0033W are proposed as part of the current application, however, the overall general arrangement and attenuation volumes are to be maintained as per the permitted application.

Figure 3.2 Kishoge Site 3 Surface Water Sub-Catchments

The gross area of the site surface water Catchment A that outfalls to the existing OldBridge network is 4.67ha with a calculated impermeable area of 3.03ha.

The gross area of the site surface water Catchment B is 7.55ha with a calculated impermeable area of 5.49ha of contributing to ATN 03. The calculations have also accounted for the future urban core with an assumed impermeability factor of 0.75.

The calculated impermeable area contributing to ATN 03 is therefore 5.49ha versus an allowance of 5.57ha, thus the development falls within the design allowances made in the regional attenuation sizing.

See Table 3.1 below for details of surface water effective areas.

(Note – for the purpose of surface water area calculations, Catchment B has been split into 6no. segments for each outfall/connection to the NLS trunk sewer. The total areas and impermeable areas of surface water Catchments A and Catchment B are included at the bottom of Table 3.1).

	Hardstanding Type	Gross Area (ha)	Runoff Co- efficient	Impermeable Area (ha)
× =	Roof	1.030	1.00	1.030
Catchment A (Locally Attenuated) (Outfall to OldBridge)	Permeable Paving	0.308	0.80	0.246
atchmen (Locally ttenuate Outfall t)ldBridge	Hard Surfacing	1.084	1.00	1.084
atc (L((Ou Old	Soft Landscpe & Public Open Space	2.248	0.30	0.674
C A O	Sub-Total (ha)	4.670		3.034
1 03)				
TIN II	Roof	0.429	1.00	0.429
to A	Permeable Paving	0.145	0.80	0.116
allt	Hard Surfacing	0.581	1.00	0.581
Catchment B1 (Outfall to ATN 03)	Soft Landscpe & Public Open Space	0.712	0.30	0.214
<u> </u>	Sub-Total (ha)	1.867		1.339
03				
NTN VIN	Roof	0.400	1.00	0.400
to 4	Permeable Paving	0.100	0.80	0.080
Catchment B2 (Outfall to ATN 03)	Hard Surfacing	0.573	1.00	0.573
Cai	Soft Landscpe & Public Open Space	0.423	0.30	0.127
<u>) (</u>	Sub-Total (ha)	1.496		1.180
Catchment B3 (Outfall to ATN 03)				
Catchment B3 butfall to ATN 0	Roof	0.172	1.00	0.172
to /	Permeable Paving	0.033	0.80	0.027
tch	Hard Surfacing	0.229	1.00	0.229
out Ca	Soft Landscpe & Public Open Space	0.366	0.30	0.110
	Sub-Total (ha)	0.800		0.537
Catchment B4 Outfall to ATN 03)				
AT A	Roof	0.382	1.00	0.382
to Te	Permeable Paving	0.086	0.80	0.068
Catchment B4 Jutfall to ATN 0	Hard Surfacing	0.359	1.00	0.359
C Ca	Soft Landscpe & Public Open Space	0.296	0.30	0.089
	SUB-TOTAL (ha)	1.123		0.898
Catchment B5 ocally Attenuated) Outfall to ATN 03)	D (0.405	1 00	0.405
IN UN	Roof	0.135	1.00	0.135
nen ten o A	Permeable Paving	0.023	0.80	0.018
chn y At all t	Hard Surfacing Soft Landscpe & Public Open Space	0.216	1.00 0.30	0.216
Catchment B5 Locally Attenuatec (Outfall to ATN 03)	*Future Urban Core	0.472	0.30	0.141
9 <u>9</u> 9	Sub-Total (ha)	0.832 1.497	0.75	0.469
		1.407		0.333
Catchment B6 Outfall to ATN 03)	Roof	0.163	1.00	0.163
ent	Permeable Paving	0.033	0.80	0.026
Catchment B6 Jutfall to ATN 0	Hard Surfacing	0.256	1.00	0.256
atc tfal	Soft Landscpe & Public Open Space	0.230	0.30	0.094
0 C	Sub-Total (ha)	0.766	0.00	0.540
-				
	Catchment A Total	4.670		3.034
	Catchment B Total	7.549		5.494
	TOTAL (ha)	12.218		8.528

Table 3.1 Surface Water Catchments Effective Areas

3.3.1 Compliance with Attenuation Design

Calculation of regional attenuation volumes is included within the SWMP and within the NLS infrastructure application. These regional features cater for the attenuation volumes required for individual developments such as the subject site, Kishoge Site 3.

In the absence of development plans for individual development parcels, the attenuation volumes required in the regional features were based on an assumed '% Impermeable' for each parcel. This section documents the proposed development's characteristics against those assumed for regional attenuation volume calculations to ensure the development falls within the design allowances.

Sito. Galetiment	Attenuation Ref	Catchrownt Area (18)	Assumed Imparmeable Area (from Rudoff Factors)	Assumed % Impermeable (from Runoff Factors)	Storage Type	Aliowable Outflow (/s) (Seb- catchnem)	Allowabii Distlaw (Ps) (Gatahment)	Storaga Voltima Required (100 years m3)
1	ATN03	18.9	9.28	49.1%	Pond	58.59	58.59	5,100
2A	ATN05	5.2	2.47	47.5%	Modular	16.12	149.11	1,250
2B	ATN04	6.8	4.56	67.1%	Pond	21.8	170.19	3,000
3	ATN06	42.9	23.52	54.8%	Pond	132.99	132.99	14,500
4AA	ATN10	13.5	7.12	52.7%	Pond	41.85	41.85	4,000
4B	ATN07	33.08	17.93	54.2%	Modular & Basin	102.55	102.55	10,000
4BB	ATN08	9.02	7.02	77.8%	Modular & Basin	27.98	130.53	4,430
4CCc	ATN11c	7.29	3.21	44.0%	Modular	22.60	155.00	2,200
4CCb	ATN11b	1.60	1.04	65.0%	Modular	4.97	158.11	715
4CCa	ATN11a	1.76	1.15	65.3%	Pond	5.46	163.56	785
5	ATN02	67.52	35.49	52.6%	Pond	209.31	209.31	21,300
6	ATN01	14.43	8.46	58.6%	Pond	44.74	44.74	4,930
7	ATN09	11.8	2.94	24.9%	Pond	36.58	36.58	1,250

Table 3.2 Extract from Clonburris SWMP Summary Table

The SDZ surface water Catchment 1 has an overall area of 18.9ha with an assumed impermeable area of 9.28ha as detailed in the Surface Water Management Plan, shown in Table 3.2 above. Kishoge Site 3 within the SDZ Catchment 1 spans approximately 60.03% of the overall Catchment 1. Therefore, the impermeable area contribution for the subject site assumed for regional attenuation sizing would be approximately 60.03% of 9.28ha = 5.57ha.

3.4 Design Standards

Drainage is designed in accordance with the Greater Dublin Regional Code of Practice for Drainage Works and the agreed Clonburris Joint Infrastructure Works. Surface water pipework was sized using the MicroDrainage Windes drainage modelling software. The following parameters apply to the design:

- Return period for pipe network 30 years
- Return period for attenuation 100 years

- Time of entry 4 minutes
- Allowable Outflow for the SDZ 3.1 l/s/ha
- Pipe Friction (Ks) 0.6 mm
- Minimum Velocity 1.0 m/s
- Standard Average Annual Rainfall 777mm (Met Éireann)
- M5-60 16.7mm (Met Éireann)
- Ratio R (M5-60/M5-2D) 0.275 (Met Éireann)
- Storage System Storm Return Event GDSDS Volume 2, Criterion 3
 - 30-year no flooding on site
 - 100-year check no internal property flooding. Flood routing plan. FFL freeboard above
 100-year flood level
- Climate Change 20% for rainfall intensities
- Runoff Factors

Surface water sewers have been designed in accordance with IS EN 752 and the recommendations of the Greater Dublin Strategic Drainage Study', (GDSDS).

Standard drainage details, as outlined on DBFL drawings KSG3-DBFL-94-XX-DR-C-5301 to 5304 are in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

The minimum pipe diameter for public surface water sewers is 225mm. Private drains within the proposed development will comply with Irish Water/ GDSDS minimum requirements.

Surface water sewer modelling results for the main drainage networks are included in Appendix A.

3.5 Climate Change

Rainfall values for the proposed development are sourced from Met Eireann to calculate the FSR input hydrograph for the drainage design as required by the GDSDS. The design rainfall intensities were increased by a factor of 20% to take account of climate change, as required by the GDSDS for attenuation storage design.

Under the site-specific Flood Risk Assessment (FRA) carried out for Site 3, design rainfall intensities were increased by a factor of 30% for climate change to test the flood risk to the existing ESB substation. In depth details can be found within the FRA report KSG3-DBFL-XX-XX-RP-C-0004.

3.6 Pluvial Flooding Provision

The surface water network, attenuation storage and site levels are designed to accommodate a 100-year storm event and includes climate change provision. Floor levels of houses are set above the 100-year flood levels by a minimum of 0.5m for protection. Locally around the existing ESB substation, excess surface water will be routed around its perimeter towards the nearby proposed attenuation pond through the shaping of site levels and bioretention strips to suit. For storms greater than 100-year events, the development has been designed to provide overland flood routes along the various development roads without affecting building floor levels.

3.7 Surface Water Quality Provision

Run-off rates from the regional attenuation systems are controlled by vortex flow control devices. Surface water management proposals for the development also incorporate the following to reduce its impact:

- Designed in accordance with the 'Greater Dublin Strategic Drainage Study' GDSDS and the Clonburris joint infrastructure works surface water management plan requirements.
- Incorporates SUDS features e.g. permeable paving in high-risk parking areas at the front of houses.
- On-line attenuation/infiltration facilities with an oil separator prior to discharge to a public surface water sewer has been included in the trunk infrastructure under planning reference SDZ24A/0033W.

3.8 Flood Risk Assessment

As part of the Clonburris SDZ Draft Planning Scheme, South Dublin County Council commissioned a Strategic Flood Risk Assessment (SFRA) for the lands which was completed by JBA Consulting and is listed as a supporting document to the planning scheme (<u>https://clonburris.ie/wpcontent/uploads/2022/03/Clonburris-SDZ-SFRA.pdf</u>). The subject sites land was accounted for in the Clonburris SDZ Strategic Flood Risk Assessment. It was predicted that the subject site was at low risk of flooding (Flood Zone C) for events up to the Q1000 event. The study also found there is no existing development within the subject site that is at potential risk of flooding.

As part of the strategic flood risk assessment, historic and predicted flood risk mapping published by the OPW on the Flood Hazard Mapping Website <u>http://www.floodinfo.ie</u> was reviewed.

Historical flood/maps data indicate there are no recorded flood events within the proposed site boundary. There are two recorded recurring flood events within 2km of the proposed site. The

first is a recurring flood event at the Cappaghmore Culvert located approximately 1.8m to the east of the site. The second is located at the Beech Row Bungalows approximately 1.5km to the east of the site. There are no recorded recurring flood events within close proximity to the site. The nearest recurring flood event is at Beech Row, approximately 2km to the east of the subject site.

The Eastern CFRAM (Catchment Flood Risk Assessment and Management) study details the predicted risk for a variety of fluvial and coastal flood scenarios. The mapping does not include the watercourse reaches affected by the proposed scheme and only maps downstream flooding. The proposed development is therefore outside of the Q100 and Q1000 flood extents and within Flood Zone C (low risk of flooding).

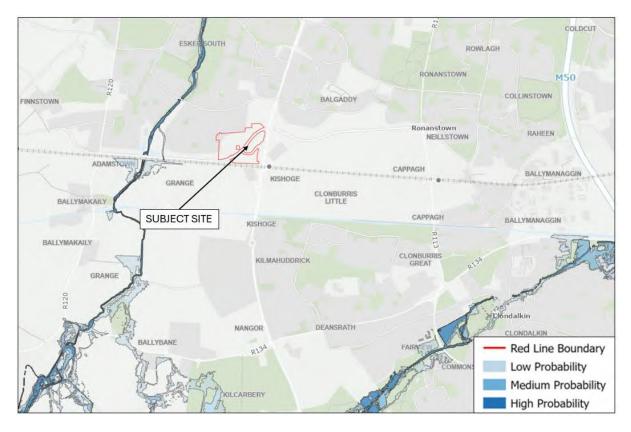


Figure 3.3 Extract of CFRAMS Data from OPW FloodInfo.ie

The OPW undertook an Irish Coastal Protection Strategy Study (ICPSS) which produced coastal/tidal flood extents maps for the Irish coastline for a 0.5% AEP tidal flood level. This map indicates that the site is far outside the extents of the coastal/tidal flood zone.

Figure 3.4 Extract of ICPSS Data from OPW FloodInfo.ie

A site-specific Flood Risk Assessment has been carried out for the proposed development site.

Although the site is not situated in a high risk (Flood Zone A) or moderate risk (Flood Zone B) flood zone, the assessment was carried out focusing on the proximity of the Griffeen River to the west and the existing 38kV ESB substation located within the site boundary. The assessment concludes that the ESB substation is not at risk to flooding from nearby watercourses or from the proposed development, proposed attenuation ponds or excess surface water runoff within the site.

The full Flood Risk Assessment can be found in report KSG3-DBFL-XX-XX-RP-C-0004 as part of this planning application.

3.9 Flood Exceedance

For storms greater than the 1%AEP pluvial event, the development's drainage network design may be exceeded, and run-off may flow above ground along the main roads. The development has been designed without minimal areas/depressions where possible.

The portion of the site northwest of Adamstown Avenue will generally route excess run-off to the north and west towards the attenuation pond ATN 02.

The portion of the site southeast of Adamstown Avenue will generally route excess run-off to the north and west towards the attenuation pond ATN 02. House floor levels have been set to make allowance for any possible areas of surface ponding during exceedance events.

Refer to Figure 3.5 for the overland flood exceedance routes for the proposed development.

Figure 3.5 Proposed Overland Flood Routing

3.9.1 Compliance with SWMP

DBFL Consulting Engineers have separately undertaken a 'Surface Water Management Plan' (SWMP) for the overall Clonburris Strategic Development Zone (SDZ). The SWMP for the SDZ has been submitted to and agreed with SDCC. The SWMP outlines the surface water strategy for the overall SDZ lands and the requirements for each individual development site within the SDZ which includes the subject site. The SWMP includes the strategy for attenuation design, SuDS features, run off rates and trunk infrastructure layout. The subject site has been designed in accordance with the strategy agreed upon in the SWMP.

The proposed site will benefit from trunk surface water infrastructure proposed as part of the Clonburris Northern Link Steet (NLS) works for which planning was granted under reference SDZ24A/0033W. The NLS works include trunk surface water sewers and regional attenuation to serve the subject site, this strategic infrastructure aligns with the SWMP proposals and allows for a treatment train of SuDS measures within individual sites and within the regional features.

The subject site will have two main surface water catchments. Runoff generated from the western portion of the proposed development will outfall to the existing Old Bridge Road network. Runoff generated from the majority (north, south and east of site) of the proposed development will be collected in a new gravity sewer and discharged to the regional attenuation system ATN 03 constructed as part of the NLS works.

The downstream regional attenuation system ATN 03 will consist of an open attenuation pond. Outflow from the attenuation structure within the SDZ limits flow to a rate of 3.1 l/s/ha as detailed in the SWMP for the SDZ.

See Figure 3.6 and Figure 3.7 below showing the proposed development site within the overall Clonburris SDZ surface water catchment plan.

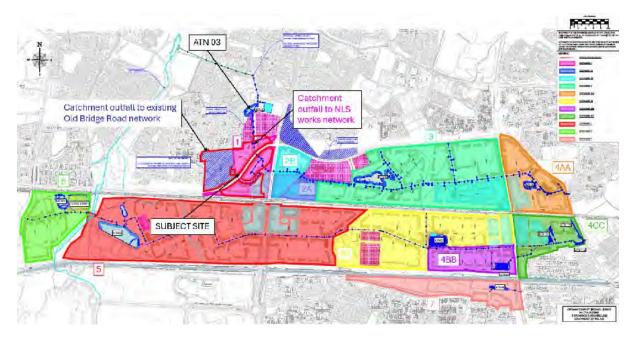


Figure 3.6 Overall Clonburris Surface Water Catchment Map

Figure 3.7 Proposed Site within Clonburris Surface Water Catchment Plan

The below table documents the site design compliance with the SWMP Requirements & Objectives

SDZ Requirements/ Objectives	Proposed Development Compliance
O1. It is an objective of the Surface Water Management Plan that proposals for all development cells include provision for at least two separate SuDS features	The proposed objective is met and exceeded in the subject design. SuDS features in the site design (prior to discharge to regional SuDS features) include • Permeable paving • Bioretention areas • SuDS tree pits • Open attenuation ponds
O2. It is an objective of the Surface Water Management Plan that green roofs are provided to any suitable buildings with area >300m ² within Urban Centre sub sectors.	A portion of the site to the southeast is within an Urban Centre sub sector. There are no buildings >300m ² proposed here, therefore objective is not applicable.

Green roof coverage should be minimum of 60% of building area	
O3. It is an objective of the Surface Water Management Plan that runoff from roads	The proposed objective is met in the subject design.
adjacent to suitable parkland or landscape strips should be conveyed in vegetated open channel SuDS features	Bioretention areas and tree pits are provided to collect and convey road runoff along roads adjacent to open space.
O4. It is an objective of the Surface Water Management Plan that new link streets incorporate drainage discharges from carriageway runoff to tree pits or similar features.	Northern Link Street design is provided separately to this development under planning reference SDZ24A/0033W. Drainage discharges to SuDS features are noted to incorporated into this separate application
O5. It is an objective of the Surface Water Management Plan that all private parking areas are surfaced with pervious paving.	The proposed objective is met in the subject design. All parking areas are proposed to be surfaced with pervious paving.

3.9.2 Compliance with Surface Water Policy

Surface water management for the proposed development is designed to comply with the Greater Dublin Strategic Drainage Study (GDSDS) policies and guidelines and the requirements of South Dublin County Council. The guidelines require the following four main criteria to be provided by the development's surface water design:

- Criterion 1: River Water Quality Protection satisfied by providing interception storage using permeable paving in driveways, treatment of run-off within the SUDS features e.g. permeable paving for driveways/parking bays, swales, bioretention areas and within the attenuation storage system and oil separators on the main surface water outfalls from the development. SuDS tree pits are also proposed to intercept road runoff.
- Criterion 2: River Regime Protection satisfied by attenuating run-off with flow control devices prior to discharge to the outfall.
- Criterion 3: Level of Service (flooding) for the site satisfied by the Site being outside the 1000-year coastal and fluvial flood zones, (See Flood Risk Assessment). Pluvial flood risk addressed by development designed to accommodate a 100-year storm as per GDSDS. Planned flood routing for storms greater than 100-year level, considered in design, the development has been designed to provide an overland flood route from the development towards the surface water outfall.

• Criterion 4: River flood protection – attenuation and long-term storage provided within the SUDS features e.g. permeable paving construction, swales, bioretention areas, tree pits and attenuation facilities.

4 FOUL DRAINAGE

4.1 Existing Foul Drainage

Existing foul drainage runs along the northern side of Adamstown Avenue through the subject site. The existing site is predominantly greenfield and therefore has no foul loading at present. The planning application SDZ24A/0033W includes the trunk foul sewers which the subject site will connect into. The majority of the subject site's foul layout will be designed to connect into the trunk foul sewers.

4.2 Design Strategy

The proposed foul water network has been split into 2no. separate catchments for the subject site.

It is proposed that the foul water generated in Kishoge Site 3 foul Catchment A will discharge into the existing OldBridge foul outfall to the northwest of the proposed site. 120no. units will connect to the existing OldBridge outfall as per connection feasibility confirmation. See Appendix C for the Uisce Éireann Confirmation of Feasibility.

Foul water from Kishoge Site 3 foul Catchment B will be collected by sewers to be constructed as part of NLS works, discharged via gravity towards pumping station 3 (to the northeast of the site) and pumped east where it eventually discharges at the existing 9B trunk sewer on R113 Fonthill Road. See Figure 4.1 below showing the proposed foul Catchments A and B.

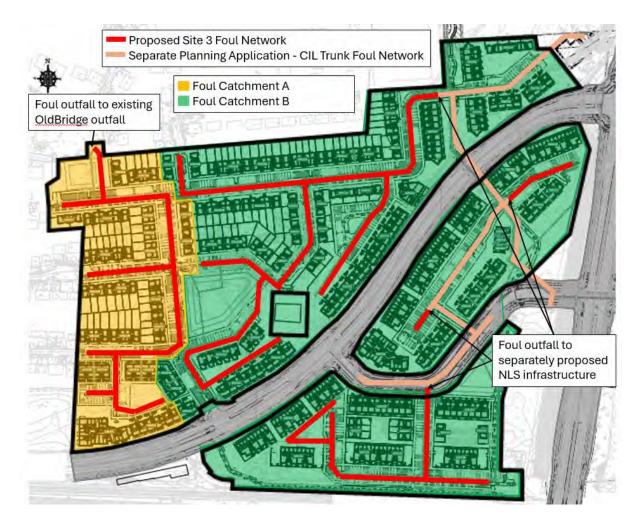


Figure 4.1 Kishoge Site 3 Foul Water Sub-Catchments

4.3 Design Criteria

Foul sewers have been designed in accordance with the Building Regulations and specifically in accordance with the principles and methods set out in the Irish Water Design and Construction Requirements for Self-Lay Developments July 2020 (Revision 2) and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

The following criteria have been applied:

446l/dwelling/day (based on 2.7 persons per
house, a per capita wastewater flow of 150
litres per head per day and a 10% allowance
for infiltration)
14 units per house (as BS8301)

Pipe Friction (Ks)	1.5 mm
Minimum Velocity	0.75 m/s (self-cleansing velocity)
Maximum Velocity	2.5 m/s
Frequency Factor	0.5 for domestic use
Manhole Depths	< 5.0m

Foul sewer design calculations from Windes are provided in Appendix B.

All foul sewers and manholes will be constructed in accordance with the Irish Water Standard Details and the Irish Water Code of Practice for Wastewater.

Longitudinal sections for the proposed foul sewers are detailed on drawings KSG3-DBFL-94-XX-DR-C-3601 to 3603.

A Statement of Design Acceptance (SoDA) was received from Uisce Éireann in March 2025 (See Appendix F).

4.4 Compliance with Irish Water Standards

The proposed foul sewer design and layout is in accordance with the Irish Water 'Code of Practice for Wastewater Infrastructure and the Irish Water 'Wastewater Infrastructure Standard Details'. Refer to Appendix C for the Irish Water Confirmation of Feasibility for the subject development as received form Irish Water.

4.5 Compliance with Clonburris Water and Wastewater Report

The proposed foul sewer design and layout complies with the Clonburris Water and Wastewater Report as agreed with SDCC and Irish Water.

The overall Clonburris SDZ has been divided into 7no. separate foul water catchments. The subject site is within foul Catchment W and Catchment S of the SDZ (refer to Table 4.1 & Figure 4.1). The proposed site will benefit from foul infrastructure proposed as part of separately approved NLS works. Trunk foul sewer network has been designed as part of the NLS works to serve the majority of the subject site based on the average net density for Catchment W, ranging from the "Low Margin" to a "High Margin". The overall SDZ lands are relatively flat, therefore, the pumping of wastewater is required.

Catchment	Residential Dwellings Low Margin	Residential Dwellings Target	Residential Dwellings High Margin	Retail GFA (m ²)	Employment GFA (m ²)	Community/Civic Building GFA (m ²)	Number of Schools
Catchment T	148	162	175	0	0	0	
Catchment U	2035	2615	3198	14370	9215	3100	2
Catchment V	0	0	0	0	0	0	0
Catchment W	1236	1466	1705	600	4800	0	2 & 1 (Existing)
Catchment X	2680	3293	3896	6700	14500	3600	2
Catchment Y	1521	1760	1991	850	2600	600	1
Catchment Z	110	121	133	0	0	0	

As per the granted Clonburris NLS Stage 2 works application, a foul Catchment S has been included which will not discharge into Clonburris SDZ trunk infrastructure. Foul Catchment S will serve 120no. units and discharge to an existing network in OldBridge Estate, in agreement with SDCC and Uisce Éireann. See Figure 4.2 below.

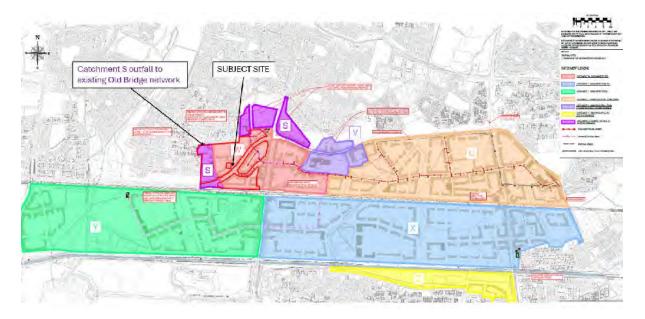


Figure 4.2 Clonburris SDZ Foul Water Catchment Zones & Pumping Stations

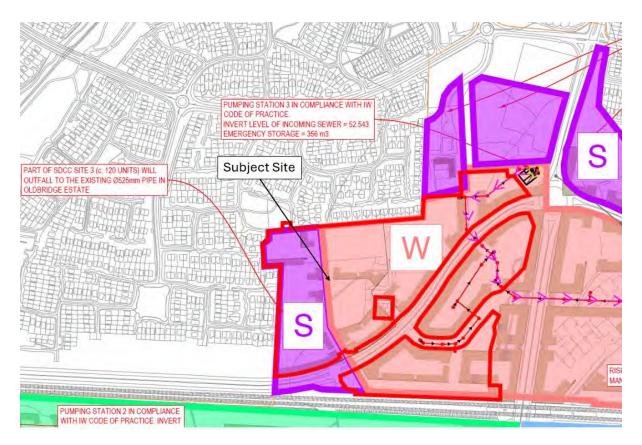


Figure 4.3 Site within SDZ Foul Catchment Zones

4.6 Design Calculations

This application comprises 580no. residential units and 553m² of creche area. The development will discharge to Pumping Station 3. The estimated loading from the proposed development is provided for both foul Catchment A in Table 4.2 and foul Catchment B in Table 4.3 below. Full network calculations are contained in Appendix B.

Table 4.2 Predicted Kishoge Site 3 Foul Catchment A Calculations

	RESIDE	NTIAL - PREDICTED	DEVELOPMENT FOUL	FLOWS							
Unit Type	No.	Loading	Occupancy	Occupancy	Daily Loading	Daily Loading					
		I/person/day	person/unit		l/day	l/s					
Houses	54	150	2.7	146	21,870	0.25					
Apartments	38	150	2.7	103	15,390	0.18					
Duplexes/Triplexes	28	150	2.7	76	11,340	0.13					
				Resider	ntial Daily Loading	0.56					
					Growth Factor	1					
Infiltration @ 10% (as CoP App B - 2.2.4)											
				Dry	Weather Flow I/s	0.62					
			Residentia		CoP App B - 2.2.5)	6.0					
	Design Foul Flow I/s										
*Flow rates calculated using IW CoP for Wastewater Infrastructure Appendix C											
	NON-RES	IDENTIAL - PREDICT	ED DEVELOPMENT FO	UL FLOWS	-						
Unit Type	Floor Area	Occupancy Load	Occupancy	Loading	Daily Loading	Daily Loading					
	m2	m2 /person		I/Person/day	l/day	l/s					
Creche	553	7	79	50	3,950	0.05					
				Non - Resider	ntial Daily Loading	0.05					
					Growth Factor	1					
			Infilt	ration @ 10% (as	CoP App B - 2.2.4)	0.00					
				Dry	Weather Flow I/s	0.05					
			Commercia	al Peak Factor (as	CoP App B - 2.2.7)	4.5					
				De	sign Foul Flow I/s	0.23					
		тоти	AL PREDICTED DEVELO	DPMENT AVERAG	E FOUL FLOWS I/s	0.61					
			TOTAL PREDICTED DE	VELOPMENT PEA	K FOUL FLOWS I/s	3.94					
	*Flow rates calcu	lated using IW CoP fe	or Wastewater Infrastr	ucture Appendix D							

Table 4.3 Predicted Kishoge Site 3 Foul Co	Catchment B Calculations
--	--------------------------

	RESIDE	NTIAL - PREDICTED	DEVELOPMENT FOUL	FLOWS							
Unit Type	No.	Loading	Occupancy	Occupancy	Daily Loading	Daily Loading					
		I/person/day	person/unit		l/day	l/s					
Houses	91	150	2.7	246	36,855	0.43					
Apartments	38	150	2.7	103	15,390	0.18					
Duplexes/Triplexes	331	150	2.7	894	134,055	1.55					
				Resider	ntial Daily Loading	2.16					
					Growth Factor	1					
Infiltration @ 10% (as CoP App B - 2.2.4)											
				Dry	Weather Flow I/s	2.37					
			Residentia	· · ·	CoP App B - 2.2.5)	6.0					
	Design Foul Flow I/s										
*Flow rates calculated using IW CoP for Wastewater Infrastructure Appendix C											
	NON-RES	IDENTIAL - PREDICT	ED DEVELOPMENT FO	UL FLOWS	-						
Unit Type	Floor Area	Occupancy Load	Occupancy	Loading	Daily Loading	Daily Loading					
	m2	m2 /person		I/Person/day	l/day	l/s					
Creche	553	7	79	50	3,950	0.05					
				Non - Resider	ntial Daily Loading	0.05					
					Growth Factor	1					
			Infilt	ration @ 10% (as	CoP App B - 2.2.4)	0.00					
				Dry	Weather Flow I/s	0.05					
			Commercia	al Peak Factor (as	CoP App B - 2.2.7)	4.5					
	Design Foul Flow I/s										
		тоти	AL PREDICTED DEVELO	DPMENT AVERAG	E FOUL FLOWS I/s	2.20					
			TOTAL PREDICTED DE	VELOPMENT PEA	K FOUL FLOWS I/s	14.46					
	*Flow rates calcu	lated using IW CoP fe	or Wastewater Infrastr	ucture Appendix D							

5 WATER SUPPLY AND DISTRIBUTION

5.1 Existing Water Supply

There is an existing 400mm diameter watermain running along Adamstown Avenue which will serve the proposed site. The proposed site will also benefit from trunk watermain infrastructure proposed as part of the NLS works for which was granted permission under planning reference SDZ24A/0033W. The planning application includes a 200mm diameter watermain running along the proposed NLS through the southeast of the subject site as shown in Figure 5.1.

Figure 5.1 Irish Water Strategic Watermain Plan around Clonburris SDZ

5.2 Development Water Main Layout

The watermains of the subject site will connect into the NLS trunk watermain infrastructure and the existing watermain infrastructure within Adamstown Avenue, creating three separate 180mm primary watermain loops serving the proposed development site. The 180mm loops within the subject site will then feed smaller 125mm distribution watermains.

The connection to the public water main will include a metered connection with sluice valve arrangement in accordance with the requirements of Irish Water. Air valves are included at localised high points.

Individual houses will have their own connections to the distribution main via service connections and boundary boxes. Individual service boundary boxes will be of the type to suit Irish Water and to facilitate domestic meter installation.

Hydrants are provided for firefighting at locations to ensure that each dwelling is within the required Building Regulations distance of a hydrant.

The development's proposed water-main distribution system is shown on drawing KSG3-DBFL-93-XX-DR-C-1351.

A Statement of Design Acceptance (SoDA) was received from Uisce Éireann in March 2025 (See Appendix F).

5.3 Compliance with Irish Water Standards

The proposed watermain design and layout is in accordance with the Irish Water 'Code of Practice for Water Infrastructure' and The Irish Water 'Water Infrastructure Standard Details'.

5.4 Compliance with Clonburris Water and Wastewater Report

A Confirmation of Feasibility for the overall SDZ lands has been received from Uisce Éireann (ref: CDS2512559856). The proposed watermain design and layout complies with the Clonburris Water and Wastewater strategy as agreed with SDCC and Irish Water.

A further Confirmation of Feasibility application for the subject Kishoge Site 3 development (ref: CDS24003031) was completed and received in May 2024. Refer to Appendix C for further details.

The watermain systems for the NLS works have been approved under planning reference SDZ24A/0033W. Minor amendments to the plan footprints permitted under SDZ24A/0033W are proposed as part of the current application, however, the overall general arrangement is be maintained as per the permitted application.

The proposed site falls within District 8 (DMA8) of the District Metering Areas (DMA) under the Clonburris SDZ district metering strategy as shown in Figure 5.2 below.

Figure 5.2 Clonburris SDZ District Water Metering Strategy

The water demand calculated for the proposed site is compliant with the SDZ district water demands. The proposed site has 580no. units and a creche versus 717no. units under DMA8.

The proposed site has an average day demand in peak week of 3.57l/s (308m³/day) versus 503.28m³/day under DMA8. Therefore, the average day demand in peak week of the proposed site is 61.2% of the DMA8 demand.

Table 5.1 below shows the water demand summary for DMA8 within the SDZ.

District Metering Area	Average Day Demand in Peak Week (m³/day)	Residential Units	Domestic Population	Non Domestic Population	Total Hourly Demand (l/sec)
DMA 8	503.28	717	1,936	533	17.96
DMA 9	605.15	862.00	2,327.40	615.17	21.58
DMA 10	235.57	364.00	982.80	164.11	8.27
DMA 11	343.87	558.00	1,506.60	0.00	11.94
DMA 12	656.55	883.00	2,384.10	1,398.38	23.68
DMA 13	502.12	695.00	1,876.50	539.44	18.01
	2846.5	4079	11013.3	3249.8	101.4

Table 5.1 Clonburris SDZ Water Demand Summary

Table 5.2, in the next section 5.5, shows the predicted water demand for the proposed site.

5.5 Design Calculations

The water demand is designed in accordance with the principles and methods set out in Irish Water's 'Code of Practice for Water Infrastructure - Connections and Developer Services - Design & Construction Requirements for Self-Lay Developments - July 2020'.

Overall water demand is calculated using IW CoP for Water Infrastructure section 3.7.2, as outlined below:

- Per-capita consumption 150l/person/day
- Average day/week demand factor 1.25
- Peak demand factor 5.0
- Average daily domestic demand = Total occupancy * Per-capita consumption
- Average day/peak week demand = Average daily domestic demand * Average day/week demand factor
- Peak hour water demand = Average day/peak week demand * Peak demand factor
- Estimated water demand for the proposed development is provided in Table 5.2.

		RESIDENTI	AL - WATER DE	MAND		-				
Unit Type	No. Dwellings	Occupancy Rate /dwelling	Occupancy	Per Capita Consumption	Average Daily Domestic Demand	Average Daily Domestic Deman				
				I/Person/day	l/day	l/s				
Apartments	76	2.7	205	150	30,780	0.36				
Houses	145	2.7	392	150	58,725	0.68				
Duplexes/Triplex	359	2.7	969	150	145,395	1.68				
				Total Ave	rage Daily Loading I/s	2.72				
			ŀ	Average Day/We	ek Domestic Demand	1.25				
Average Day/Peak Week Demand I/s										
					Peak Demand Factor	5				
					ur Water Demand I/s	16.99				
	*Flow rates calculated using IW CoP for Water Infrastructure									
		NON-RESIDE	NTIAL WATER	DEMAND						
Unit Type	Floor Area	Occupancy Rate	Occupancy	Per Capita	Average Daily	Average Daily				
				Consumption	Demand	Demand				
	m²	m ² /person		I/Person/day	l/day	l/s				
Creche	553	7	79	150	11,850	0.14				
				Total Ave	rage Daily Loading I/s	0.14				
					<u> </u>	•				
				Average	e Day/Week Demand	1.25				
					ak Week Demand I/s	0.17				
					Peak Demand Factor	5				
				Peak Ho	ur Water Demand I/s	0.86				
	*Flow	rates calculated us	ing IW CoP fo	r Water Infrastru	cture					
			- V							
				TOTAL AVERAG	E DAILY LOADING I/s	2.86				
			A	VERAGE DAY/PEA	K WEEK DEMAND I/s	3.57				
				PEAK HC	OUR WATER DEMAND	17.85				
	*Flow rates ca	alculated using IW C	OP for Wastew	ater Infrastructure	Appendix D					

Table 5.2 Predicted Kishoge Site 3 Water Calculations

Appendix A : SURFACE WATER NETWORK CALCULATIONS [MICRO-DRAINAGE NETWORK MODULE]

DBFL Consulting Engineers		Page 1
Ormond House	Kishoge	raye I
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	
Date 25/02/2025	Designed by Darren Richardson	Micro
File 250127 Kishoge Site3 Dr	Checked by Dieter Bester	Drainage
Innovyze	Network 2020.1.3	
	NCCWOIR 2020.1.5	
STORM SEWER DESIGN }	by the Modified Rational Method	
Design	<u>Criteria for SW1</u>	
Pipe Sizes STAN	NDARD Manhole Sizes STANDARD	
Return Period (years) M5-60 (mm) Ratio R Maximum Rainfall (mm/hr)	16.700Add Flow / Climate Chang0.275Minimum Backdrop Heigh50Maximum Backdrop Heigh30 Min Design Depth for Optimisation0.000Min Vel for Auto Design only	t (m) 0.200 t (m) 1.500 on (m) 1.200 (m/s) 1.00
Designe	d with Level Soffits	
Time Ar	ea Diagram for SW1	
0-4 1.134	(mins) (ha) (mins) (ha) 4-8 1.872 8-12 0.028	hment A - bale Area
Total Pipe	e Volume (m³) = 154.059]
<u>Network</u>	Design Table for SW1	
« - Indica	tes pipe capacity < flow	
PN Length Fall Slope I.Area T.E (m) (m) (1:X) (ha) (min	. Base k HYD DIA Section s s) Flow (l/s) (mm) SECT (mm)	Type Auto Design
1.000 27.541 0.138 199.6 0.074 4.	00 0.0 0.600 o 300 Pipe/Con	duit 🔒
	00 0.0 0.600 o 300 Pipe/Cond	duit 🧯
1.002 12.450 0.062 200.8 0.074 0.	00 0.0 0.600 o 300 Pipe/Cond	
2.000 19.551 0.098 199.5 0.074 4.	00 0.0 0.600 o 225 Pipe/Cond	duit 🔒
Netwo	ork Results Table	
PN Rain T.C. US/IL E I.An (mm/hr) (mins) (m) (ha)		ap Flow (s) (l/s)
1.001 50.00 4.69 54.692 0.3	148 0.0 0.0 0.0 1.11 78	8.410.08.220.08.230.1
2.000 50.00 4.35 54.603 0.0	074 0.0 0.0 0.0 0.92 36	5.7 10.0

			Engine	ers							Pag	ge 2
rmond	House				K	ishoge						
Jpper	Ormond	l Quay	Y		S	ite 3						
Dublin	7, Ir	eland	b		SI	SW Catchment A						CCO.
	5/02/2					esigned by		on Ri	char	dson		icro
				+ 02 Dr							Dr	ainag
			bge_si	te3_Dr.		hecked by		L Bes	ster			
Innovy	ze				N	etwork 202	0.1.3					
				<u>Netwo</u>	ork De	<u>sign Table</u>	for	SW1				
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Secti	lon Type	a Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design
1.003	38.537	0.128	3 301.1	0.074	0.00	0.0	0.600	0	450	Pipe/	'Conduit	:
3.000	19.707	0.09	9 199.1	0.074	4.00	0.0	0.600	0	450	- Pipe/	'Conduit	-
										-		
			3 300.0 299.2	0.074 0.074	0.00		0.600	0		-	'Conduit 'Conduit	_
1.005			3 303.7		0.00		0.600	0		-	'Conduit	
			3 299.4		0.00		0.600	0			Conduit Conduit	
4.000	28.049	0.140	200.4	0.074	4.00	0.0	0.600	0	300	Pipe/	'Conduit	: 🔒
			3 199.9	0.074	0.00		0.600	0		-	Conduit	
	28.871			0.074	0.00		0.600	0		-	(Conduit	
4.003	9.170				0.00		0.600	0		-	'Conduit	
			2 201.5		0.00		0.600	0		-	Conduit	
4.005	8.171 7.584			0.074 0.074	0.00		0.600	0		-	′Conduit ′Conduit	
4.000	1.304	0.07	5 99.0	0.074	0.00	0.0	0.000	0	430	ribe/	Conduin	:
5.000	27.864	0.139	9 200.5	0.074	4.00	0.0	0.600	0	300	Pipe/	'Conduit	: 🔒
			3 199.3	0.074	0.00		0.600	0		-	'Conduit	
4.007	46.526	0.383	1 122.1	0.074	0.00	0.0	0.600	0	450	Pipe/	'Conduit	: 🔒
				N	etwor]	k Results :	<u> Table</u>					
PI	N Ra	in	т.с.	US/IL Σ	I.Area	a ΣBase	Foul	Add 1	Flow	Vel	Cap	Flow
	(mm,	/hr) (mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/	's)	(m/s)	(l/s)	(1/s)
1.0	03 50	0.00	5.43 5	54.538	0.37	0.0	0.0		0.0	1.17	185.5	50.1
3.0	00 50	0.00	4.23 5	54.509	0.07	4 0.0	0.0		0.0	1.44	228.6	10.0
1.0	04 50	0.00	5.91 5	54.410	0.51	8 0.0	0.0		0.0	1.17	185.8	70.1
1.0		0.00	6.16 5		0.59				0.0		396.6	
1.0		0.00	6.21 5		0.66				0.0		393.6	90.2
1.0		0.00	7.02 5		0.74				0.0		396.4	

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)		Cap (1/s)	Flow (l/s)
1.003	50.00	5.43	54.538	0.370	0.0	0.0	0.0	1.17	185.5	50.1
3.000	50.00	4.23	54.509	0.074	0.0	0.0	0.0	1.44	228.6	10.0
1.004	50.00	5.91	54.410	0.518	0.0	0.0	0.0	1.17	185.8	70.1
1.005	50.00	6.16	54.297	0.592	0.0	0.0	0.0	1.40	396.6	80.2
1.006	50.00	6.21	54.227	0.666	0.0	0.0	0.0	1.39	393.6	90.2
1.007	50.00	7.02	54.214	0.740	0.0	0.0	0.0	1.40	396.4	100.2
4.000	50.00	4.42	55.694	0.074	0.0	0.0	0.0	1.11	78.3	10.0
4.001	50.00	5.26	55.554	0.148	0.0	0.0	0.0	1.11	78.3	20.0
4.002	50.00	5.49	55.289	0.222	0.0	0.0	0.0	2.03	323.5	30.1
4.003	50.00	5.57	55.000	0.296	0.0	0.0	0.0	2.04	323.9	40.1
4.004	50.00	5.64	54.908	0.370	0.0	0.0	0.0	1.43	227.2	50.1
4.005	50.00	5.71	54.844	0.444	0.0	0.0	0.0	2.04	323.9	60.1
4.006	50.00	5.77	54.762	0.518	0.0	0.0	0.0	2.04	323.7	70.1
5.000	50.00	4.42	54.963	0.074	0.0	0.0	0.0	1.11	78.2	10.0
5.001	50.00	4.83	54.824	0.148	0.0	0.0	0.0	1.11	78.5	20.0
4.007	50.00	6.20	54.686	0.740	0.0	0.0	0.0	1.84	292.4	100.2

DBFL Co	DBFL Consulting Engineers												
Ormond	House				Ki	shoge				(1.0		
Upper C	Ormond	Quay			Si	te 3		4					
Dublin	7, Ire	eland			SW	Catchment	: A				Mic	10	
Date 25	5/02/20)25			De	Designed by Darren Richardson							
File 25	50127_F	Kishog	ge_Sit	e3_Dr.	Ch	ecked by I	Dieter	Bes	ter		Uld	inage	
Innovyz	ze				Ne	twork 2020	0.1.3						
				<u>Netwo</u>	rk Des	ign Table	for S	<u>5W1</u>					
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section !	Гуре	Auto	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design	
6.000	25.107	0.126	199.3	0.074	4.00	0.0	0.600	0	300	Pipe/Cond	duit	٠	
7.000	12.387	0.039	317.6	0.074	4.00	0.0	0.600	0	300	Pipe/Cond	duit	0	
7.001	4.924	0.039	126.3	0.074	0.00		0.600		300	Pipe/Cond	duit	ĕ	
7.002	21.167	0.118	179.4	0.074	0.00	0.0	0.600	0	300	Pipe/Cond	duit	ē	
6.001	20.743	0.104	199.5	0.074	0.00	0.0	0.600	0	450	Pipe/Cond	duit	۵	
6.002	21.048	0.073	288.3	0.074	0.00	0.0	0.600	0	450	Pipe/Cond	duit	ě	
4.008	12.972	0.143	90.7	0.074	0.00	0.0	0.600	0	450	Pipe/Cond	duit	-	
	11.152			0.074	0.00		0.600			Pipe/Cond		ĕ	
4.010	13.053	0.065	200.8	0.074	0.00	0.0	0.600	0		Pipe/Cond		ĕ	
8.000	65.603	0.328	200.0	0.074	4.00	0.0	0.600	0	300	Pipe/Cond	duit	۵	
1.008	66.495	0.332	200.3	0.074	0.00	0.0	0.600	0	600	Pipe/Cond	duit	۵	
	51.526			0.074	4.00		0.600	0		Pipe/Cond		0	
9.001	36.034	0.180	200.2	0.074	0.00	0.0	0.600	0	225	Pipe/Cond	duit	0	
10.000	31.085	0.155	200.5	0.074	4.00	0.0	0.600	0	225	Pipe/Cond	duit	8	
				Ne	etwork	Results T	<u>able</u>						

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
6.000	50.00	4.38	54.497	0.074	0.0	0.0	0.0	1.11	78.5	10.0	
7.000	50.00	4.24	54.566	0.074	0.0	0.0	0.0	0.88	62.0	10.0	
7.001	50.00	4.29	54.528	0.148	0.0	0.0	0.0	1.40	98.8	20.0	
7.002	50.00	4.60	54.489	0.222	0.0	0.0	0.0	1.17	82.8	30.1	
6.001	50.00	4.84	54.371	0.370	0.0	0.0	0.0	1.44	228.4	50.1	
6.002	50.00	5.13	54.267	0.444	0.0	0.0	0.0	1.19	189.6	60.1	
4.008	50.00	6.30	54.305	1.258	0.0	0.0	0.0	2.14	339.6	170.3	
4.009	50.00		54.162	1.332	0.0	0.0	0.0		322.6		
4.010	50.00		54.051	1.406	0.0	0.0	0.0		227.6		
8.000	50.00	4.99	54.314	0.074	0.0	0.0	0.0	1.11	78.3	10.0	
1.008	50.00	7.67	53.986	2.294	0.0	0.0	0.0	1.72	485.5	310.6	
9.000	50.00	4.93	54.175	0.074	0.0	0.0	0.0	0.92	36.6	10.0	
9.001	50.00	5.58	53.917	0.148	0.0	0.0	0.0	0.92	36.6	20.0	
10.000	50.00	4.56	53.892	0.074	0.0	0.0	0.0	0.92	36.6	10.0	
				©1982-2	020 Innov	yze					

DBFL Consulting Engineers		Page 4
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

Network Design Table for SW1

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
9.002	16.666	0.083	200.8	0.074	0.00	0.0	0.600	0	225	Pipe/Conduit	•
1.009	61.773	0.309	199.9	0.074	0.00	0.0	0.600	0	600	Pipe/Conduit	•
11.000	29.580	0.370	79.9	0.074	4.00	0.0	0.600	0	450	Pipe/Conduit	0
1.011	10.296 15.925 12.234	0.080	199.1 200.6	0.074 0.074 0.074	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0 0	600 600	Pipe/Conduit Pipe/Conduit Pipe/Conduit	•
1.013	8.610	0.043	200.2	0.074	0.00	0.0	0.600	0	600	Pipe/Conduit	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
9.002	50.00	5.89	53.737	0.296	0.0	0.0	0.0	0.92	36.5«	40.1
1.009	50.00	8.27	53.654	2.664	0.0	0.0	0.0	1.72	486.0	360.7
11.000	50.00	4.22	53.715	0.074	0.0	0.0	0.0	2.28	361.9	10.0
1.010 1.011 1.012 1.013	50.00 50.00 50.00 50.00	8.52 8.64	53.345 53.294 53.214 53.153	2.812 2.886 2.960 3.034	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.72	483.6 487.0 485.2 485.6	390.8 400.8

		Page 5						ers	g Engir	sultin	DBFL Con
						e	Kishog			ouse	Ormond H
		- L.					Site 3		ay	mond Q	Upper Or
		Micro			E A	chment	SW Cat		nd	, Irel	Dublin 7
			n	ichardso	Darren R	ed by	Design		5	02/202	Date 25/
	P	Drainag		ster	Dieter Be	d by I	. Checke	te3_Dr	shoge_S	127_Ki	File 250
					0.1.3	k 2020	Networ				Innovyze
					or SW1	lles f	le Schedu	<u>Manho</u>			
meter Backd mm) (mm		Pipes In Invert Level (m)	PN	Diameter (mm)	Pipe Out Invert Level (m)	PN	MH Diam.,L*W (mm)	MH	MH Depth (m)	MH CL (m)	MH Name
				300	54.818	1.000	1200	en Manhole	2.582 0	57.400	SA14
300		54.680	1.000	300	54.692	1.001	1200	n Manhole	2.420 0	57.100	SA13
300		54.600	1.001	300	54.600	1.002	1200	n Manhole	2.200 0	56.800	SA12
				225	54.603	2.000	1200	en Manhole	2.362 0	56.965	SA11-1
300		54.538	1.002	450	54.538	1.003	1200	en Manhole	2.105 0	56.610	SA11
225		54.505	2.000								
				450	54.509	3.000	1200	n Manhole	1.799 0	56.308	SA10-1
450		54.410	1.003	450	54.410	1.004	1200	n Manhole	1.936 0	56.346	SA10
450		54.410	3.000								
450		54.297	1.004	600	54.297	1.005	1500	n Manhole	2.440 0	56.737	SA9
600		54.227	1.005	600	54.227	1.006	1500	n Manhole	2.741 0	56.968	SA8
600		54.214	1.006	600	54.214	1.007	1500	n Manhole	2.819 0	57.033	SA7
				300	55.694	4.000	1200	n Manhole	1.606 0	57.300	SA6-11
300		55.554	4.000	300	55.554	4.001	1200	n Manhole	1.746 0	57.300	SA6-10
300		55.276	4.001	450	55.289	4.002	1200	n Manhole	2.429 0	57.705	SA6-9
450		55.000	4.002	450	55.000	4.003	1200	en Manhole	2.149 0	57.149	SA6-8
450		54.908	4.003	450	54.908	4.004	1200	en Manhole	2.082 0	56.990	SA6-7
450		54.876	4.004	450	54.844	4.005	1200	en Manhole			
450		54.762	4.005	450	54.762	4.006	1200	en Manhole	2.338 0	57.100	SA6-5
				300	54.963	5.000	1200	en Manhole	2.172 0	57.135	SA6-4-2
300		54.824	5.000	300	54.824	5.001	1200	en Manhole	2.250 0	57.074	SA6-4-1
450		54.686	4.006	450	54.686	4.007	1200	en Manhole	2.451 0	57.137	SA6-4
300		54.686	5.001								
				300	54.497	6.000	1200				SA6-2-2-1
				300	54.566	7.000	1200	en Manhole	2.565 0	57.131	SA6-2-5
300		54.527	7.000	300	54.528	7.001	1200	en Manhole			
300		54.489	7.001		54.489	7.002		en Manhole			
300		54.371	6.000	450	54.371	6.001	1200	en Manhole	2.606 0	56.977	SA6-2-2
300		54.371	7.002								
450		54.267	6.001		54.267	6.002		en Manhole			
450		54.305	4.007	450	54.305	4.008	1200	en Manhole	2.806 0	57.000	SA6-3
450		54.194	6.002								
450		54.162	4.008		54.162	4.009		en Manhole			
450		54.051	4.009		54.051	4.010		n Manhole			
				300	54.314	8.000		en Manhole			
600		53.986	1.007	600	53.986	1.008	1500	en Manhole	2.691 0	56.677	SA6
450		53.986	4.010								
300		53.986	8.000								

DBFL Consulting Engineers					
Ormond House	Kishoge				
Upper Ormond Quay	Site 3				
Dublin 7, Ireland	SW Catchment A	Micro			
Date 25/02/2025	Designed by Darren Richardson	Drainage			
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage			
Innovyze	Network 2020.1.3				

MH Name	MH CL (m)	MH Depth	MH Connecti	MH on Diam.,L*W	PN	Pipe Out Invert	Diameter	PN	Pipes In Invert	Diameter	Backdror
Hame		(m)	connecti	(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)
SA5-3	57.103	2.928	Open Manh	ole 1200	9.000	54.175	225				
SA5-2	56.754	2.837	Open Manh	ole 1200	9.001	53.917	225	9.000	53.917	225	
SA5-1-1	56.700	2.808	Open Manh	ole 1200	10.000	53.892	225				
SA5-1	56.549	2.812	Open Manh	ole 1200	9.002	53.737	225	9.001	53.737	225	
								10.000	53.737	225	
SA5	56.396	2.742	Open Manh	ole 1500	1.009	53.654	600	1.008	53.654	600	
								9.002	53.654	225	
SA4-1	55.978	2.263	Open Manh	ole 1200	11.000	53.715	450				
SA4	56.099	2.754	Open Manh	ole 1500	1.010	53.345	600	1.009	53.345	600	
								11.000	53.345	450	
SA3	56.300	3.006	Open Manh	ole 1500	1.011	53.294	600	1.010	53.294	600	
SA2	56.300	3.086	Open Manh	ole 1500	1.012	53.214	600	1.011	53.214	600	
SA1	56.300	3.147	Open Manh	ole 1500	1.013	53.153	600	1.012	53.153	600	
SAO	56.000	2.890	Open Manh	ole 0		OUTFALL		1.013	53.110	600	

MH Name	Manhole Easting (m)	Manhole Northing (m)		Intersection Northing (m)	Manhole Access	Layout (North)
SA14	704165.528	732828.314	704165.528	732828.314	Required	_
SA13	704139.618	732818.977	704139.618	732818.977	Required	
SA12	704121.439	732822.107	704121.439	732822.107	Required	
SA11-1	704101.887	732834.557	704101.887	732834.557	Required	-
SA11	704121.439	732834.557	704121.439	732834.557	Required	4
SA10-1	704101.729	732873.117	704101.729	732873.117	Required	-
SA10	704121.436	732873.095	704121.436	732873.095	Required	

DBFL Consulting Engineers		Page 7
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SA9	704155.340	732873.063	704155.340	732873.063	Required	
SA8	704176.185	732875.085	704176.185	732875.085	Required	_
SA7	704178.145	732878.512	704178.145	732878.512	Required	1
SA6-11	704267.076	732883.340	704267.076	732883.340	Required	
SA6-10	704244.364	732866.881	704244.364	732866.881	Required	
SA6-9	704196.156	732839.216	704196.156	732839.216	Required	5-
SA6-8	704180.338	732863.368	704180.338	732863.368	Required	1
SA6-7	704179.432	732872.494	704179.432	732872.494	Required	\sim
SA6-6	704184.857	732875.976	704184.857	732875.976	Required	
SA6-5	704192.990	732876.765	704192.990	732876.765	Required	
SA6-4-2	704244.286	732908.562	704244.286	732908.562	Required	
SA6-4-1	704226.524	732887.094	704226.524	732887.094	Required	
SA6-4	704200.238	732878.998	704200.238	732878.998	Required	1
SA6-2-2-1	704188.732	732947.447	704188.732	732947.447	Required	-
SA6-2-5	704248.958	732942.360	704248.958	732942.360	Required	5

DBFL Consulting Engineers	Page 8	
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

-	Manhole Access	Intersection Northing (m)	Intersection Easting (m)	Manhole Northing (m)	Manhole Easting (m)	MH Name
ired	Required	732950.273	704239.427	732950.273	704239.427	SA6-2-4
ired	Required	732951.927	704234.790	732951.927	704234.790	SA6-2-3
ired	Required	732949.838	704213.725	732949.838	704213.725	SA6-2-2
ired	Required	732929.176	704215.558	732929.176	704215.558	SA6-2-1
ired .	Required	732925.215	704194.886	732925.215	704194.886	SA6-3
ired	Required	732937.089	704189.664	732937.089	704189.664	SA6-2
ired	Required	732947.011	704184.571	732947.011	704184.571	SA6-1
ired	Required	732940.154	704106.231	732940.154	704106.231	SA6-12
ired	Required	732946.455	704171.530	732946.455	704171.530	SA6
ired	Required	733022.699	704268.825	733022.699	704268.825	SA5-3
ired	Required	733017.724	704217.539	733017.724	704217.539	SA5-2
ired	Required	733045.137	704178.679	733045.137	704178.679	SA5-1-1
ired	Required	733014.197	704181.678	733014.197	704181.678	SA5-1
ired	Required	733012.637	704165.085	733012.637	704165.085	SA5
ired	Required	733003.817	704074.160	733003.817	704074.160	SA4-1

DBFL Consulting Engineers		Page 9
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)		Layout (North)
SA4	704103.601	733006.673	704103.601	733006.673	Required	
SA3	704102.614	733016.922	704102.614	733016.922	Required	ų.
SA2	704101.147	733032.779	704101.147	733032.779	Required	1 - E
SA1	704099.862	733044.946	704099.862	733044.946	Required	1
SA0	704103.668	733052.669			No Entry	2

DBFL Consulting Engineers						
Ormond House	Kishoge					
Upper Ormond Quay	Site 3	·				
Dublin 7, Ireland	SW Catchment A	Micro				
Date 25/02/2025	Designed by Darren Richardson	Drainage				
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage				
Innovyze	Network 2020.1.3	1				

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	300	SA14	57.400	54.818	2.282	Open Manhole	1200
1.001	0	300	SA13	57.100	54.692	2.108	Open Manhole	1200
1.002	0	300	SA12	56.800	54.600	1.900	Open Manhole	1200
2.000	0	225	SA11-1	56.965	54.603	2.137	Open Manhole	1200
1.003	0	450	SA11	56.610	54.538	1.622	Open Manhole	1200
3.000	0	450	SA10-1	56.308	54.509	1.349	Open Manhole	1200
1.004	0	450	SA10	56.346	54.410	1.486	Open Manhole	1200
1.005	0	600	SA9	56.737	54.297	1.840	Open Manhole	1500
1.006	0	600	SA8	56.968	54.227	2.141	Open Manhole	1500
1.007	0	600	SA7	57.033	54.214	2.219	Open Manhole	1500
4.000	0	300	SA6-11	57.300	55.694	1.306	Open Manhole	1200
4.001	0	300	SA6-10	57.300	55.554	1.446	Open Manhole	1200
4.002	0	450	SA6-9	57.705	55.289	1.966	Open Manhole	1200
4.003	0	450	SA6-8	57.149	55.000	1.699	Open Manhole	1200
4.004	0	450	SA6-7	56.990	54.908		Open Manhole	1200
4.005	0	450	SA6-6	57.023	54.844		Open Manhole	1200

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	27.541	199.6	SA13	57.100	54.680	2.120	Open Manhole	1200
1.001	18.446	200.5	SA12	56.800	54.600	1.900	Open Manhole	1200
1.002	12.450	200.8	SA11	56.610	54.538	1.772	Open Manhole	1200
2.000	19.551	199.5	SA11	56.610	54.505	1.880	Open Manhole	1200
1.003	38.537	301.1	SA10	56.346	54.410	1.486	Open Manhole	1200
3.000	19.707	199.1	SA10	56.346	54.410	1.486	Open Manhole	1200
1.004	33.904	300.0	SA9	56.737	54.297	1.990	Open Manhole	1500
1.005	20.943	299.2	SA8	56.968	54.227	2.141	Open Manhole	1500
1.006	3.948	303.7	SA7	57.033	54.214	2.219	Open Manhole	1500
1.007	68.264	299.4	SA6	56.677	53.986	2.091	Open Manhole	1500
4.000	28.049	200.4	SA6-10	57.300	55.554	1.446	Open Manhole	1200
4.001	55.582	199.9	SA6-9	57.705	55.276	2.129	Open Manhole	1200
4.002	28.871	99.9	SA6-8	57.149	55.000		Open Manhole	1200
4.003	9.170	99.7	SA6-7	56.990	54.908	1.632	Open Manhole	1200
4.004	6.447	201.5	SA6-6	57.023	54.876	1.697	Open Manhole	1200
4.005	8.171	99.6	SA6-5	57.100	54.762	1.888	Open Manhole	1200
				©1982-	2020 Ir	novyze		

DBFL Consulting Engineers						
Ormond House	Kishoge					
Upper Ormond Quay	Site 3					
Dublin 7, Ireland	SW Catchment A	Micro				
Date 25/02/2025		Drainage				
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage				
Innovyze	Network 2020.1.3					

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
4.006	0	450	SA6-5	57.100	54.762	1.888	Open Manhole	1200
5.000	0	300	SA6-4-2	57.135	54.963	1.872	Open Manhole	1200
5.001	0	300	SA6-4-1	57.074	54.824	1.950	Open Manhole	1200
4.007	0	450	SA6-4	57.137	54.686	2.001	Open Manhole	1200
6.000	0	300	SA6-2-2-1	56.794	54.497	1.997	Open Manhole	1200
7.000	0	300	SA6-2-5	57.131	54.566	2.265	Open Manhole	1200
7.001	0	300	SA6-2-4	57.043	54.528	2.215	Open Manhole	1200
7.002	0	300	SA6-2-3	56.996	54.489	2.207	Open Manhole	1200
6.001	0	450	SA6-2-2	56.977	54.371	2.156	Open Manhole	1200
6.002	0	450	SA6-2-1	57.000	54.267	2.283	Open Manhole	1200
4.008	0	450	SA6-3	57.000	54.305	2.245	Open Manhole	1200
4.009	0	450	SA6-2	57.000	54.162	2.388	Open Manhole	1200
4.010	0	450	SA6-1	56.760	54.051	2.259	Open Manhole	1200
8.000	0	300	SA6-12	57.167	54.314	2.553	Open Manhole	1200

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
4.006	7.584	99.8	SA6-4	57.137	54.686	2.001	Open Manhole	1200
	27.864 27.504		SA6-4-1 SA6-4				Open Manhole	
5.001	27.304	199.3	5A0-4	57.137	54.000	2.131	Open Manhole	1200
4.007	46.526	122.1	SA6-3	57.000	54.305	2.245	Open Manhole	1200
6.000	25.107	199.3	SA6-2-2	56.977	54.371	2.306	Open Manhole	1200
7.000	12.387	317.6	SA6-2-4	57.043	54.527	2.216	Open Manhole	1200
7.001	4.924	126.3	SA6-2-3	56.996	54.489	2.207	Open Manhole	1200
7.002	21.167	179.4	SA6-2-2	56.977	54.371	2.306	Open Manhole	1200
6.001	20.743	199.5	SA6-2-1	57.000	54.267	2.283	Open Manhole	1200
6.002	21.048	288.3	SA6-3				Open Manhole	1200
4.008	12.972	90.7	SA6-2	57.000	54.162	2.388	Open Manhole	1200
4.009	11.152	100.5	SA6-1		54.051		Open Manhole	
4.010	13.053	200.8	SA6				Open Manhole	1500
8.000	65.603	200.0	SA6	56.677	53.986	2.391	Open Manhole	1500
				©1982-2	2020 In	novyze		

DBFL Consulting Engineers						
Ormond House	Kishoge					
Upper Ormond Quay	Site 3					
Dublin 7, Ireland	SW Catchment A	Micro				
Date 25/02/2025	Designed by Darren Richardson	Drainage				
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage				
Innovyze	Network 2020.1.3					

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.008	0	600	SA6	56.677	53.986	2.091	Open Manhole	1500
9.000 9.001	0		SA5-3 SA5-2				Open Manhole Open Manhole	1200 1200
10.000	0	225	SA5-1-1	56.700	53.892	2.583	Open Manhole	1200
9.002	0	225	SA5-1	56.549	53.737	2.587	Open Manhole	1200
1.009	0	600	SA5	56.396	53.654	2.142	Open Manhole	1500
11.000	0	450	SA4-1	55.978	53.715	1.813	Open Manhole	1200
1.010 1.011 1.012 1.013	0 0 0	600 600 600 600	SA4 SA3 SA2 SA1		53.345 53.294 53.214 53.153	2.406 2.486	Open Manhole Open Manhole Open Manhole	

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.008	66.495	200.3	SA5	56.396	53.654	2.142	Open Manhole	1500
				56.754 56.549			Open Manhole Open Manhole	1200 1200
10.000	31.085	200.5	SA5-1	56.549	53.737	2.587	Open Manhole	1200
9.002	16.666	200.8	SA5	56.396	53.654	2.517	Open Manhole	1500
1.009	61.773	199.9	SA4	56.099	53.345	2.154	Open Manhole	1500
11.000	29.580	79.9	SA4	56.099	53.345	2.304	Open Manhole	1500
1.011	10.296 15.925 12.234 8.610	199.1 200.6	SA3 SA2 SA1 SA0	56.300 56.300 56.300 56.000		2.486 2.547	Open Manhole Open Manhole Open Manhole	

DBFL Consulting Engineers						
Ormond House	Kishoge					
Upper Ormond Quay	Site 3					
Dublin 7, Ireland	SW Catchment A	Micro				
Date 25/02/2025	Designed by Darren Richardson	Drainage				
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage				
Innovyze	Network 2020.1.3					

<u>Area Summary for SW1</u>

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	-	-	100	0.074	0.074	0.074
1.001	-	-	100	0.074	0.074	0.074
1.002	-	-	100	0.074	0.074	0.074
2.000	-	-	100	0.074	0.074	0.074
1.003	-	-	100	0.074	0.074	0.074
3.000	-	-	100	0.074	0.074	0.074
1.004	-	-	100	0.074	0.074	0.074
1.005	-	-	100	0.074	0.074	0.074
1.006	-	-	100	0.074	0.074	0.074
1.007	-	-	100	0.074	0.074	0.074
4.000	-	-	100	0.074	0.074	0.074
4.001	-	-	100	0.074	0.074	0.074
4.002	-	-	100	0.074	0.074	0.074
4.003	-	-	100	0.074	0.074	0.074
4.004	-	-	100	0.074	0.074	0.074
4.005	-	-	100	0.074	0.074	0.074
4.006	-	-	100	0.074	0.074	0.074
5.000	-	-	100	0.074	0.074	0.074
5.001	-	-	100	0.074	0.074	0.074
4.007	-	-	100	0.074	0.074	0.074
6.000	-	-	100	0.074	0.074	0.074
7.000	-	-	100	0.074	0.074	0.074
7.001	-	-	100	0.074	0.074	0.074
7.002	-	-	100	0.074	0.074	0.074
6.001	-	-	100	0.074	0.074	0.074
6.002	-	-	100	0.074	0.074	0.074
4.008	-	-	100	0.074	0.074	0.074
4.009	-	-	100	0.074	0.074	0.074
4.010	-	-	100	0.074	0.074	0.074
8.000	-	-	100	0.074	0.074	0.074
1.008	-	-	100	0.074	0.074	0.074
9.000	-	-	100	0.074	0.074	0.074
9.001	-	-	100	0.074	0.074	0.074
10.000	-	-	100	0.074	0.074	0.074
9.002	-	-	100	0.074	0.074	0.074
1.009	-	-	100	0.074	0.074	0.074
11.000	-	-	100	0.074	0.074	0.074
1.010	-	-	100	0.074	0.074	0.074
1.011	-	-	100	0.074	0.074	0.074
1.012	-	-	100	0.074	0.074	0.074
1.013	-	-	100	0.074	0.074	0.074
				Total	Total	Total
				3.034	3.034	3.034

DBFL Consulting Engineers		Page 14
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025	Designed by Darren Richardson	Desinado
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	1

Free Flowing Outfall Details for SW1

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	w
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

1.013 SAO 56.000 53.110 0.000 0 0

Simulation Criteria for SW1

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	16.700	Storm Duration (mins)	30
Ratio R	0.275		

	ng Engin	eers					Page 15
)rmond House			Kishoge				
Ipper Ormond	Quay		Site 3				1
) Dublin 7, Ire	land		SW Catc	hment A			Micco
) ate 25/02/20			Designe	d by Dar	ren Richa	rdson	Micro
File 250127 K		ito3 Dr		-	er Bester		Drainag
		100_01		2020.1.			
Innovyze			Network	2020.1.	5		
		<u>Onli</u>	<u>ne Contro</u>	ls for SV	<u> 1</u>		
<u>Hydro-Bra</u>	<u>ake® Opti</u>	.mum Manho	le: SA6-2	, DS/PN:	4.009, V	olume (m³	·): 5.1
		Un	it Referenc	e MD-SHE-C)112-8000-2	413-8000	
			ign Head (m			2.413	
		Desig	n Flow (l/s)		8.0	
			Flush-Flo			lculated	
			-		e upstream	-	
		2	Applicatio			Surface	
			mp Availabl iameter (mm			Yes 112	
			rt Level (m			54.162	
1	Minimum Ou	tlet Pipe D				150	
		d Manhole D				1200	
		Control 1	Points	Head (m)	Flow (l/s)	•	
	Des	sign Point (Calculated)	2.413	8.0)	
			Flush-Flo ^m	• 0.492	6.0	5	
				0.999			
The hydrologic Hydro-Brake®	cal calcul Optimum as	ations have specified.	Should an	on the He other type	of contro	ge relation l device ot	ther than a
	cal calcul Optimum as	ations have specified.	been based Should an	on the He other type	ad/Dischar of contro	ge relation l device ot	ther than a
Hydro-Brake® (Hydro-Brake O	cal calcul Optimum as ptimum® be	ations have specified. utilised t	been based Should an hen these s	on the He other type torage rou	ad/Dischar of contro ting calcu	ge relation l device of lations wil	ther than a ll be
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100	cal calcul Optimum as ptimum® be ow (1/s) [3.9]	ations have specified. utilised t Depth (m) Fl 1.200	been based Should an hen these s .ow (1/s) De 5.8	on the He other type torage rou epth (m) F 3.000	ead/Dischar of contro ting calcu low (l/s) 8.9	ge relation 1 device of 1ations wij Depth (m) 1 7.000	ther than a ll be
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8	ations have specified. utilised t Depth (m) Fl 1.200 1.400	been based Should an hen these s .ow (1/s) De 5.8 6.2	on the He other type torage rou epth (m) F 3.000 3.500	ead/Dischar of contro ting calcu low (1/s) 8.9 9.5	ge relation 1 device ot 1ations wil Depth (m) 7.000 7.500	ther than a 11 be Flow (1/s) 13.3 13.7
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6	on the He other type torage rou epth (m) F 3.000 3.500 4.000	ead/Dischar of contro ting calcu low (1/s) 8.9 9.5 10.2	ge relation 1 device ot 1ations wil Depth (m) 1 7.000 7.500 8.000	ther than a 11 be Flow (1/s) 13.3 13.7 14.1
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4 6.6	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0	on the He other type torage rou apth (m) F 3.000 3.500 4.000 4.500	ad/Dischar of contro ting calcu low (1/s) 8.9 9.5 10.2 10.7	ge relation 1 device of 1ations wil Depth (m) 7.000 7.500 8.000 8.500	ther than a 11 be Flow (1/s) 13.3 13.7 14.1 14.5
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4 6.6 6.6	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3	on the He other type torage rou apth (m) F 3.000 3.500 4.000 4.500 5.000	ead/Dischar of contro ting calcu low (1/s) 8.9 9.5 10.2 10.7 11.3	ge relation 1 device ot 1ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	ther than a 11 be Flow (1/s) 13.3 13.7 14.1 14.5 14.9
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4 6.6 6.6 6.6 6.6	ations have specified. e utilised t 1.200 1.400 1.600 1.800 2.000 2.200	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7	on the He other type torage rou apth (m) F 3.000 3.500 4.000 4.500 5.000 5.500	ead/Dischar of contro ting calcu low (1/s) 8.9 9.5 10.2 10.7 11.3 11.8	ge relation 1 device of 1ations wil Depth (m) 7.000 7.500 8.000 8.500	ther than a 11 be Flow (1/s) 13.3 13.7 14.1 14.5
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4 6.6 6.6	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3	on the He other type torage rou apth (m) F 3.000 3.500 4.000 4.500 5.000	ead/Dischar of contro ting calcu low (1/s) 8.9 9.5 10.2 10.7 11.3	ge relation 1 device ot 1ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	ther than a 11 be Flow (1/s) 13.3 13.7 14.1 14.5 14.9
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. beth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3	epth (m) F 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	ead/Dischar of contro ting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8	ge relation 1 device of 1ations will Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. e utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3	on the He other type torage rou apth (m) F 3.000 3.500 4.000 4.500 5.500 6.000 6.500 DS/PN: 2	ad/Dischar of contro ting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo	ge relation l device of lations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³)	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. e utilised t pepth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2,	on the He other type torage rou apth (m) F 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 DS/PN: 2 e MD-SHE-0	ad/Dischar of contro ting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo	ge relation l device of lations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³)	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. e utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un. Des	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc	on the He other type torage rou epth (m) F 3.000 3.500 4.000 4.500 5.500 6.000 6.500 DS/PN: 2 e MD-SHE-C	ad/Dischar of contro ting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo	ge relation l device of lations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 <u>9.500</u>	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. e utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un. Des	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo	<pre>con the He other type torage rou epth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations wil Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. e utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un. Des	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo Objectiv	e Minimis	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2	ge relation l device of lations wil Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 1ume (m ³) 507-1450 2.507 14.5 lculated storage	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un: Design	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo Objectiv Applicatio	<pre>con the He other type torage rou epth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations wil Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated storage Surface	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un Design	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo Objectiv Applicatio mp Availabl	<pre>con the He other type torage rou epth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations wil Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated storage Surface Yes	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un. Design Sun D.	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo Objectiv Applicatio mp Availabl iameter (mm	<pre>con the He other type torage rou ppth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations will Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated storage Surface Yes 150	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Br</u>	cal calcul Optimum as ptimum® be 3.9 5.8 6.4 6.6 6.6 6.6 6.3 5.3 cake® Opt	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un. Design Sun D. Inves	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo Objectiv Applicatio mp Availabl iameter (mm	<pre>con the He other type torage rou apth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations will Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated storage Surface Yes 150 53.214	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Br</u>	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3 cake® Opt	ations have specified. utilised t Depth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un. Design Sun D.	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo' Objectiv Applicatio mp Availabl iameter (mm rt Level (m	<pre>con the He other type torage rou apth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations will Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated storage Surface Yes 150	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Flo 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Br</u>	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3 cake® Opt	ations have specified. utilised ti pepth (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 cimum Manh Un. Design Sun Design Sun Linves	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo' Objectiv Applicatio mp Availabl iameter (mm rt Level (m	<pre>con the He other type torage rou apth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations will Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated storage Surface Yes 150 53.214 225	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3
Hydro-Brake® (Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000 <u>Hydro-Br</u>	cal calcul Optimum as ptimum® be ow (1/s) [3.9 5.8 6.4 6.6 6.6 6.6 6.6 6.3 5.3 cake® Opt	ations have specified. (m) Fl 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.6000 2.6000 2.6000 2.60000 2.60000000000	been based Should an hen these s .ow (1/s) De 5.8 6.2 6.6 7.0 7.3 7.7 8.0 8.3 ole: SA2, it Referenc ign Head (m n Flow (1/s Flush-Flo' Objectiv Applicatio mp Availabl iameter (mm rt Level (m	<pre>con the He other type torage rou apth (m) F</pre>	ead/Dischar of contro uting calcu low (1/s) 9.5 10.2 10.7 11.3 11.8 12.3 12.8 1.012, Vo 0150-1450-2 Ca	ge relation l device of lations will Depth (m) 1 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 507-1450 2.507 14.5 lculated storage Surface Yes 150 53.214 225	ther than a ll be Flow (1/s) 13.3 13.7 14.1 14.5 14.9 15.3

DBFL Consulting Engineers		Page 16
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: SA2, DS/PN: 1.012, Volume (m³): 9.5

Control Points Head (m) Flow (1/s)

Design Point	(Calculated)	2.507	14.5
	Flush-Flo™	0.656	13.7
	Kick-Flo®	1.342	10.8
Mean Flow ove	er Head Range	-	12.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) H	Flow (l/s)	Depth (m) Flow	(l/s)	Depth (m) Flow	(l/s)	Depth (m)	Flow (l/s)
0.100	5.4	1.200	12.1	3.000	15.8	7.000	23.7
0.200	11.0	1.400	11.0	3.500	17.0	7.500	24.5
0.300	12.4	1.600	11.7	4.000	18.1	8.000	25.3
0.400	13.1	1.800	12.4	4.500	19.2	8.500	26.0
0.500	13.5	2.000	13.0	5.000	20.2	9.000	26.7
0.600	13.7	2.200	13.6	5.500	21.1	9.500	27.4
0.800	13.6	2.400	14.2	6.000	22.0		
1.000	13.1	2.600	14.8	6.500	22.9		

DBFL Consulting Engineers		Page 17
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025		Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	·

Storage Structures for SW1

Tank or Pond Manhole: SA6-2, DS/PN: 4.009

Invert Level (m) 55.800

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 1268.0 1.200 2088.0

Tank or Pond Manhole: SA2, DS/PN: 1.012

Invert Level (m) 54.600

Depth (m) Area (m^2) | Depth (m) Area (m^2)

0.000 500.0 1.200 500.0

	ONDUICI	ng Engine								Page	5 I 0	
Ormond	House				Kis	hoge						
Inner (Ormond	Ouav				e 3						
	7, Ire	-					ment A				the second	
	5/02/20									— Mic		
				5		-	-		ichardson	Dra	inage	
'ile 2	5012/_K	ishoge_Si	te3_	_Dr			by Die		ster		Je	_
Innovy:	ze				Net	work	2020.1	.3				_
	<u>Summa</u> ı	<u>ry of Crit</u>	ica	l Rea	sults :	by Ma	ximum 1	Level	<u>(Rank 1) f</u>	or SW1		
	nhole He	Hot St Hot Start	art Leve f (G	Facto (mins l (mm lobal	s) C 1) C .) 0.50C) Add))) Flow	litional MADD F	actor * In	% of Total 10m³/ha Sto let Coeffie Day (l/per	orage 2.0 cient 0.8	000 800	
	1	Number of	Onli	ine Co	ontrols	2 Numi	ber of 1	Time/Are	Structures ea Diagrams	0		
		Number of (Offli	ine Co	ontrols	0 Num	ber of H	Real Tir	ne Controls	0		
					thetic	<u>Rainfa</u>	ll Detai					
		Rainfall					FSR		o R 0.275			
			Regi 0 (m		cotland				er) 0.750 er) 0.840			
		M0-0	0 (111	111)		Ţ	0.700 C	V (WIIIC	er) 0.040			
			Floo	d Die	k Warni	.ng (mm) 300.0	DV	D Status O	N		
		Margin for										
		Margin for	1 100						a Status OF	F		
		Margin for	1100		lysis T		p Fine	Inerti	a Status OF	F		
		Margin for	1100		lysis T	imeste	p Fine	Inerti	a Status OF	F		
				Ana	lysis T	imeste	p Fine	Inerti				
		Pr	ofile	Ana e(s)	lysis T DTS	imeste Statu	p Fine s ON	Inerti	Summer and	Winter		
			ofile	Ana e(s)	lysis T DTS 15,	Statu	p Fine s ON 0, 120,	Inerti 180, 24	Summer and 10, 360, 480	Winter , 600,		
		Pr	ofile	Ana e(s)	lysis T DTS 15,	Statu	p Fine s ON 0, 120,	Inerti 180, 24	Summer and	Winter , 600, 5760,		
		Pr Duration(s n Period(s)	ofile) (m:	Ana e(s) ins) ars)	lysis T DTS 15,	Statu	p Fine s ON 0, 120,	Inerti 180, 24	Summer and 0, 360, 480 2880, 4320, 7200, 8640,	Winter , 600, 5760,	1200/ m	
		Pr Duration(s	ofile) (m:	Ana e(s) ins) ars)	lysis T DTS 15,	Statu	p Fine s ON 0, 120,	Inerti 180, 24	Summer and 0, 360, 480 2880, 4320, 7200, 8640,	Winter , 600, 5760, 10080 0, 100	- +20% m	
		Pr Duration(s n Period(s)	ofile) (m:	Ana e(s) ins) ars)	lysis T DTS 15,	Statu	p Fine s ON 0, 120,	Inerti 180, 24	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3	Winter , 600, 5760, 10080 0, 100	+20% m	
		Pr Duration(s n Period(s)	ofile) (m:	Ana e(s) ins) ars)	lysis T DTS 15,	Statu	p Fine s ON 0, 120,	Inerti 180, 24 2160,	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20,	Winter , 600, 5760, 10080 0, 100 20, 20		
		Pr Duration(s n Period(s)	ofile) (m:	Ana e(s) ins) ars)	lysis T DTS 15,	Statu	p Fine s ON 0, 120,	Inerti 180, 24 2160,	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged	Winter , 600, 5760, 10080 0, 100 20, 20	climate o	
PN	Retur	Pr Duration(s n Period(s)	ofile) (m: (yea ange	Ana e(s) ins) ars)	lysis T DTS 15,	Statu	p Fine s ON 0, 120, 0, 1440,	Inerti 180, 24 2160, Water	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged	Winter , 600, 5760, 10080 0, 100 20, 20 Flooded	climate o	
	Retur US/MH Name	Pr Duration(s n Period(s) Climate Ch	ofile) (m: (yea ange E	Ana e(s) ins) ars) (%) vent	lysis T DTS 15, 7	30, 60 20, 96	p Fine s ON 0, 120, 0, 1440, US/CL (m)	Inerti 180, 24 2160, Water Level (m)	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m)	Winter , 600, 5760, 10080 0, 100 20, 20 Flooded Volume (m ³)	Flow / Cap.	
1.000	Retur US/MH Name SA14	Pr Duration(s n Period(s) Climate Ch 720 minute	ofil() (m: (ye; ange E 100	Ana e(s) ins) ars) (%) vent year	Uysis T DTS 15, 7. Winter	30, 60 20, 960 1+20%	<pre>p Fine s ON 0, 120, 0, 1440, US/CL (m) 57.400</pre>	Inerti 180, 24 2160, Water Level (m) 55.973	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855	Winter , 600, 5760, 10080 0, 100 20, 20 Flooded Volume (m ³) 0.000	Flow / Cap. 0.04	
1.000 1.001	Retur US/MH Name SA14 SA13	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute	ofil() (m: (yea ange E 100 100	Ana e(s) ins) ars) (%) vent year year	Uysis T DTS 15, 7 Winter Winter	imeste Statu 30, 60 20, 960 I+20% I+20%	<pre>p Fine s ON 0, 120, 0, 1440, US/CL (m) 57.400 57.100</pre>	Inerti 180, 24 2160, Water Level (m) 55.973 55.973	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981	Winter , 600, 5760, 10080 0, 100 20, 20 Flooded Volume (m ³) 0.000 0.000	Flow / Cap . 0.04 0.09	
1.000	Retur US/MH Name SA14 SA13 SA12	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute	ofil) (m: (yea ange E 100 100 100	Ana e(s) ins) ars) (%) vent year year year year	Winter Winter Winter	imeste Statu 30, 60 20, 960 I+20% I+20% I+20%	<pre>p Fine s ON 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800</pre>	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.972	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855	Winter , 600, 5760, 10080 0, 100 20, 20 Flooded Volume (m ³) 0.000	Flow / Cap. 0.04	
1.000 1.001 1.002	Retur US/MH Name SA14 SA13 SA12 SA11-1	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute	ofil) (m: (yea ange 100 100 100 100	Ana e(s) ins) ars) (%) vent year year year year year	Winter Winter Winter Winter Winter	imeste Statu 30, 60 20, 960 1+20% 1+20% 1+20% 1+20%	<pre>p Fine s ON 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965</pre>	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14	
1.000 1.001 1.002 2.000	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA11	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute	ofil) (m: (yea ange 100 100 100 100 100	Ana e(s) ins) ars) (%) vent year year year year year year	Winter Winter Winter Winter Winter Winter Winter	<pre>imeste 3 Statu 30, 60 20, 960 1+20% 1+20% 1+20% 1+20% 1+20% 1+20%</pre>	<pre>p Fine s ON 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610</pre>	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.971	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09	
1.000 1.001 1.002 2.000 1.003 3.000 1.004	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute	ofil) (m: (yea ange 100 100 100 100 100 100	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	<pre>imeste i Statu 30, 60 20, 960 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20%</pre>	<pre>p Fine s ON 0, 120, 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346</pre>	Inertii 180, 24 2160, Water Level (m) 55.973 55.973 55.973 55.972 55.972 55.971 55.970 55.970	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.09 0.02 0.12	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	<pre>imeste i Statu 30, 60 20, 960 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20%</pre>	<pre>p Fine s ON 0, 120, 0, 1440, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737</pre>	Inertii 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.971 55.970 55.970 55.970 55.968	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.09 0.09 0.02 0.12 0.08	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9 SA8	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 960 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	<pre>imeste i Statu 30, 60 20, 960 1+20% 1</pre>	<pre>p Fine s ON 0, 120, 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968</pre>	Inertii 180, 24 2160, Water Level (m) 55.973 55.973 55.973 55.972 55.972 55.972 55.971 55.970 55.970 55.970 55.968 55.968	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.09 0.02 0.12 0.08 0.09	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9 SA8 SA7	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 960 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20%	<pre>p Fine s ON 0, 120, 0, 1440, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033</pre>	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.973 55.972 55.972 55.971 55.970 55.970 55.970 55.970 55.968 55.968 55.968	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.09 0.02 0.12 0.08 0.09 0.06	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9 SA8 SA7 SA6-11	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 960 minute 30 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer	I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20%	<pre>p Fine s ON 0, 120, 0, 1440, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.300</pre>	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.973 55.972 55.972 55.972 55.971 55.970 55.970 55.970 55.968 55.968 55.968 55.968 55.968 55.968	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.02 0.12 0.08 0.09 0.06 0.30	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000 4.001	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9 SA8 SA7 SA6-11 SA6-10	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 960 minute 30 minute 30 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer Summer	<pre>imeste i Statu 30, 60 20, 960 1+20% 1</pre>	<pre>p Fine s ON 0, 120, 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.300 57.300</pre>	Inertii 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.972 55.972 55.971 55.970 55.970 55.970 55.968 55.968 55.968 55.968 55.968 55.968 57.226 57.160	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232 1.306	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.09 0.02 0.12 0.08 0.09 0.06 0.30 0.55	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9 SA8 SA7 SA6-11	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 960 minute 30 minute 30 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer Summer Summer	<pre>imeste i Statu 30, 60 20, 960 1+20% 1</pre>	<pre>p Fine s ON 0, 120, 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.300 57.300 57.300 57.705</pre>	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.972 55.972 55.970 55.970 55.970 55.968 57.266 57.2668	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.02 0.12 0.08 0.09 0.06 0.30	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000 4.001 4.002	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9 SA8 SA7 SA6-11 SA6-10 SA6-9	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 30 minute 30 minute 30 minute 30 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer Summer Summer	<pre>imeste i Statu 30, 60 20, 960 20, 960 1+20%</pre>	<pre>p Fine s ON 0, 120, 0, 120, 0, 1440, US/CL (m) 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.300 57.300 57.300 57.300 57.149</pre>	Inertii 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.972 55.971 55.970 55.970 55.968 55	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232 1.306 1.321	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.02 0.12 0.08 0.09 0.02 0.12 0.08 0.09 0.06 0.30 0.55 0.22	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000 4.001 4.002 4.003	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-1 SA10-1 SA10 SA9 SA8 SA7 SA6-11 SA6-10 SA6-9 SA6-8	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 30 minute 30 minute 30 minute 30 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer Summer Summer Summer	I+20% I+20%I+20% I+20% I+20%I+20% I+20% I+20%I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20%I+20% I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20%I+20% I+20%I+20%I+20%I+20% I+20%I+20%I+20%I+20%I+20%I+20% I+20%I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20% I+20%I+20%I+20% I+20%	p Fine s ON 0, 120, 0, 120, 0, 1440, 0, 1440, 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.300 57.300 57.300 57.300 57.149 56.990	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.973 55.972 55.972 55.971 55.970 55.970 55.970 55.968 57.266 57.266 57.266 57.266 57.266 57.266 57.266 57.266 57.266 57.878 55.978 55.978 55.978 55.978 55.968 55.968 55.968 55.968 57.266 57.266 57.266 57.266 57.878 57.8788 57.8788 57.8788 57.8788 57.87888 57.87888 57.878888 57.878888888888888888888888888888888888	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232 1.306 1.321 1.442	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.02 0.12 0.08 0.09 0.02 0.12 0.08 0.09 0.06 0.30 0.55 0.22 0.49	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000 4.001 4.002 4.003 4.004 4.005 4.006	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 30 minute 30 minute 30 minute 30 minute 30 minute 30 minute 30 minute 30 minute	ofil) (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer Summer Summer Summer Summer Summer	<pre>imesteg Statu 30, 60 20, 960 20, 960 1+20%</pre>	p Fine s ON 0, 120, 0, 120, 0, 1440, 0, 1440, 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.300 57.300 57.300 57.300 57.300 57.100	Inertii 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.972 55.972 55.971 55.970 55.970 55.968 56.9688 56.9688 56.968 56.968 56.9688 56.9688 56.9688 56.96	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232 1.306 1.321 1.422 1.429	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.09 0.02 0.12 0.08 0.09 0.02 0.12 0.08 0.09 0.06 0.30 0.55 0.22 0.49 0.75 0.75 0.88	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000 4.001 4.002 4.003 4.004 4.005 4.005 4.006 5.000	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 30 minute 30 minute 30 minute 30 minute 30 minute 30 minute 30 minute 30 minute	ofil() (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer Summer Summer Summer Summer Summer Summer	<pre>imeste Statu 30, 60 20, 960 20, 960 1+20%</pre>	p Fine s ON 0, 120, 0, 120, 0, 1440, 0, 1440, 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.300 57.300 57.300 57.300 57.100 57.123	Inertii 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.972 55.972 55.970 55.970 55.968 55.975 56.767 56.664 56.725	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232 1.306 1.321 1.442 1.429 1.473 1.452 1.462	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.02 0.12 0.08 0.09 0.06 0.30 0.55 0.22 0.49 0.75 0.75 0.88 0.36	
1.000 1.001 1.002 2.000 1.003 3.000 1.004 1.005 1.006 1.007 4.000 4.001 4.002 4.003 4.004 4.005 4.005 4.006 5.000	Retur US/MH Name SA14 SA13 SA12 SA11-1 SA10-	Pr Duration(s n Period(s) Climate Ch 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 720 minute 30 minute	ofil() (m: (yea ange 100 100 100 100 100 100 100 100 100 10	Ana e(s) ins) ars) (%) vent year year year year year year year year	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>imeste Statu 30, 60 20, 960 20, 960 1+20%1+20% 1+20% 1+20% 1+20%1+20% 1+20% 1+20% 1+20%1+20% 1+20% 1+20%1+20% 1+20% 1+20%1+20% 1+20% 1+20%1+20% 1+20% 1+20%1+20% 1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20%1+20% 1+20%1+20% 1+20%1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20% 1+20%1+20%1+20% 1+20%1+20%1+20% 1+20%1</pre>	p Fine s ON 0, 120, 0, 120, 0, 1440, 0, 1440, 57.400 57.100 56.800 56.965 56.610 56.308 56.346 56.737 56.968 57.033 57.000 57.023 57.100 57.135 57.074	Inerti 180, 24 2160, Water Level (m) 55.973 55.973 55.972 55.972 55.972 55.972 55.970 55.970 55.968 55.	Summer and 10, 360, 480 2880, 4320, 7200, 8640, 1, 3 20, Surcharged Depth (m) 0.855 0.981 1.072 1.144 0.983 1.011 1.110 1.071 1.141 1.154 1.232 1.306 1.321 1.442 1.429 1.473 1.452	Winter , 600, 5760, 10080 0, 100 20, 20 ← Flooded Volume (m ³) 0.000	Flow / Cap. 0.04 0.09 0.14 0.09 0.09 0.02 0.12 0.08 0.09 0.02 0.12 0.08 0.09 0.06 0.30 0.55 0.22 0.49 0.75 0.75 0.88	

DBFL Consulting Engineers		Page 19
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment A	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	·

Summary of Critical Results by Maximum Level (Rank 1) for SW1

PN	US/MH Name	Overflow (1/s)	Maximum Vol (m³)	Pipe Flow (l/s)	Status
1.000	SA14		1.301	2.9	SURCHARGED
1.001	SA13		3.319	5.8	SURCHARGED
1.002	SA12		2.765	8.7	SURCHARGED
2.000	SA11-1		1.543	2.9	SURCHARGED
1.003	SA11		3.177	14.4	SURCHARGED
3.000	SA10-1		1.647	2.9	SURCHARGED
1.004	SA10		10.640	20.1	SURCHARGED
1.005	SA9		8.122	23.0	SURCHARGED
1.006	SA8		8.565	20.8	SURCHARGED
1.007	SA7		3.782	23.1	SURCHARGED
4.000	SA6-11		1.726	21.5	FLOOD RISK
4.001	SA6-10		3.709	40.8	FLOOD RISK
4.002	SA6-9		5.856	61.5	SURCHARGED
4.003	SA6-8		6.535	83.2	FLOOD RISK
4.004	SA6-7		3.387	104.9	FLOOD RISK
4.005	SA6-6		3.004	126.8	FLOOD RISK
4.006	SA6-5		3.254	148.6	SURCHARGED
5.000	SA6-4-2		1.987	25.2	SURCHARGED
5.001	SA6-4-1		3.952	44.8	SURCHARGED
4.007	SA6-4		4.989	213.0	SURCHARGED

	Nama 111	- Door'							D-	2.0	1
		g Enginee	rs						Page	20	-
	d House			Kishoge					5		
	Ormond Q	-		Site 3							
	n 7, Irel			SW Catc					— Mici	n l	
Date 2	25/02/202	5		Designe	d by D	arrer	n Ric	chardson		nage	
File 2	250127_Ki	shoge_Sit	e3_Dr	Checked	by Di	eter	Best	cer	וסוט	nage	
Innovy	ze			Network	2020.	1.3					-
											-
	<u>Summary</u>	v of Criti	cal Rest	ults by M	aximum	Leve	<u>l (</u> F	ank 1) fo	or SW1		
						W=	tor	Surcharged	Flooded		
	US/MH				us/o		evel	Depth	Volume	Flow /	
PN	Name		Event		(m)		(m)	(m)	(m ³)	Cap.	
c	~ ~ ~ ~ ~ 1		1.0.0					1 500			
6.000 7.000		15 minute 30 minute	-					1.788 1.859	0.000	0.38 0.50	
7.000		30 minute	-					1.859		0.30	
7.001		30 minute	-					1.837		1.00	
6.001		30 minute	-					1.689			Attenuation
6.002		30 minute	-							0.93	Pond 1 -
4.008		30 minute	-					1.552		1.77	Top Water Level
4.009	SA6-2	720 minute	100 year	Winter I+2	20% 57.0	00 56	.236	1.624	0.000	0.04	L
4.010	SA6-1	960 minute	100 year	Winter I+2	20% 56.7	60 55	.970	1.469	0.000	0.05	
8.000	SA6-12	960 minute	100 year	Winter I+2	20% 57.1	67 55	.968	1.354	0.000	0.03	
1.008	SA6	960 minute	100 year	Winter I+2	20% 56.6	77 55	.968	1.382	0.000	0.08	
9.000	SA5-3	960 minute	100 year	Winter I+2	20% 57.1	03 55	.971	1.571	0.000	0.07	
9.001		960 minute	-					1.828	0.000	0.14	
10.000		960 minute	-					1.852	0.000	0.07	
9.002		960 minute	-					2.005		0.29	
1.009		960 minute	-					1.711		0.11	Attended
11.000		960 minute	-					1.795			Attenuation Pond 2 -
1.010 1.011		960 minute 960 minute						2.016 2.065		0.17 0.16	Top Water Level
1.011		960 minute	-					2.003		0.10	
1.012		15 minute	-					-0.444		0.15	
						Pipe					
			US/MH	Overflow M		Flow					
		PN	Name	(l/s) Vo	ol (m³)	(l/s)	St	atus			
		6.000 S	A6-2-2-1		2.356	26.7	FLOC	DD RISK			
		7.000	SA6-2-5		2.436	24.3	SURC	CHARGED			
		7.001	SA6-2-4		3.249	48.6	SURC	CHARGED			
		7.002	SA6-2-3		2.674			CHARGED			
		6.001	SA6-2-2					CHARGED			
		6.002	SA6-2-1					CHARGED			
		4.008	SA6-3		12.750				Attenuation	Pond 1 -	
		4.009	SA6-2		616.543			CHARGED	Max Pond	/olume	
		4.010	SA6-1		3.747			CHARGED			
		8.000 1.008	SA6-12 SA6		1.865 28.774			CHARGED CHARGED			
		9.000	SA5-3		2.026			CHARGED			
		9.000	SA5-2		4.317			CHARGED			
		10.000	SA5-1-1		2.343			CHARGED			
		9.002	SA5-1		5.090			CHARGED			
		1.009	SA5		23.060			CHARGED			
		11.000	SA4-1		2.534			D RISK			
		1.010	SA4		26.146			DD RISK			
		1.011	SA3		7.188			HARGED	Attornette	Dendo	
		1.012	SA2	\longrightarrow	687.177	15.0	SURC	'HARGEN	Attenuation Max Pond		
		1.013	SA1		0.603	44.2		OK	wax Pond	volume	
											1

	onsult	_									Pa	
	House					shoge						
	Ormond	_				te 3.						
	7, Ire					Catchmen	-		,	1	N	<i>licro</i>
	5/02/2		~			signed by				dson)raina
	50127_1	Kisho	ge_Si	_te3_D		ecked by l		r Bes	ster			
nnovyz	ze				NE	etwork ZUZ	0.1.3					
		STOR	M SEW	ier des	SIGN by	the Modif	ied R	atior	nal M	<u>letho</u>	<u>d</u>	
				<u>D</u>	<u>esign C</u>	<u>riteria fo</u>	or SW2	2				
			Pi	pe Size	es STANDA	RD Manhole	Sizes	STAND	ARD			
						el - Scotlar	nd and	Irela	nd			
		Retu	rn Pe	riod (y M5-60	ears) (mm) 16	100	Add F	rlow /	Clim	nate C	PIMP hange	. ,
				Ra	tio R 0	.275	Mir	nimum	Backd	lrop H	eight	(m) 0.
Morri	М. т. т	aximum	Rain	fall (m	m/hr)	50 20 Min Doc				-	-	(m) 1.
Maximul	m TIME					30 Min Des .000 Min	2	-	-			
	V				oeff. 0		in Slop			2		
				n	esigned	with Level S	Soffits	5				
				D			00					
				<u>Ti</u>	<u>me Area</u>	<u>Diagram</u> f	for SM	<u>12</u>				
					Time A (mins) (
						ha) (mins)	(ha)					
						ha) (mins)						
					(mins) (0-4 0	ha) (mins) .631 4-8	(ha) 0.708	1.339	_	SW	/ Catchr	nent B1 -
					(mins) (0-4 0	ha) (mins)	(ha) 0.708	1.339	←		/ Catchr permeat	
				Total	(mins) (0-4 0 Area Con	ha) (mins) .631 4-8	(ha) 0.708 ha) = 1		←			
				<mark>Total</mark> Tot	(mins) (0-4 0 Area Cor al Pipe	ha) (mins) .631 4-8 .tributing (1) .Volume (m³)	(ha) 0.708 ha) = 1 = 55.6	509	<i>←</i>			
				Total Tot <u>Netv</u>	(mins) (0-4 0 Area Cor al Pipe work Des	ha) (mins) .631 4-8 atributing (Volume (m ³) sign Table	(ha) 0.708 ha) = 1 = 55.6 for	509 <u>SW2</u>		Imp	permeat	ole Area
PN				Total Tot <u>Netv</u>	(mins) (0-4 0 Area Con al Pipe work Des a T.E.	ha) (mins) .631 4-8 atributing (Volume (m ³) sign Table Base	(ha) 0.708 ha) = 1 = 55.6 for k	509 <u>SW2</u> HYD	DIA	Imp	permeat	ole Area
PN	Length (m)	Fall (m)	Slope (1:X)	Total Tot <u>Netv</u>	(mins) (0-4 0 Area Con al Pipe work Des a T.E.	ha) (mins) .631 4-8 atributing (Volume (m ³) sign Table	(ha) 0.708 ha) = 1 = 55.6 for	509 <u>SW2</u>		Imp	permeat	ole Area
1.000	(m) 27.506	(m) 0.138	(1:X)	Total Tot <u>Netv</u> I.Are (ha) 3 0.09	(mins) (0-4 0 Area Cor al Pipe work Des a T.E. (mins) 0 4.00	ha) (mins) .631 4-8 atributing (1 Volume (m ³) sign Table Base Flow (l/s) 0.0	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600</pre>	509 <u>SW2</u> HYD SECT	DIA (mm) 450	Imp Secti Pipe/	ion Ty	pe Aut Desi it e
1.000	(m) 27.506 5.939	(m) 0.138 0.030	(1:X) 199.3 198.0	Total Tot <u>Netv</u> e I.Are (ha) 3 0.09 0 0.09	(mins) (0-4 0 Area Con al Pipe work Des a T.E. (mins) 0 4.00 0 0.00	ha) (mins) .631 4-8 atributing (1 Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0	DIA (mm) 450 450	Imp Secti Pipe/ Pipe/	ion Ty /Condu /Condu	pe Aut Desi it (
1.000 1.001 1.002	(m) 27.506	(m) 0.138 0.030 0.186	(1:X) 199.3 198.0 300.3	Total Tot <u>Netv</u> I.Are (ha) 3 0.09 0 0.09 3 0.09	(mins) (0-4 0 Area Con al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00	ha) (mins) .631 4-8 atributing (1 Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600</pre>	509 <u>SW2</u> HYD SECT	DIA (mm) 450 450 450	Imp Secti Pipe/ Pipe/ Pipe/	ion Ty	pe Aut Desi it di it di
1.000 1.001 1.002 1.003	(m) 27.506 5.939 55.854 70.969	(m) 0.138 0.030 0.186 0.237	(1:X) 199.3 198.0 300.3 299.4	Total Tot Netv I.Are (ha) 3 0.09 0 0.09 3 0.09 4 0.09	(mins) (0-4 0 Area Con al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00	ha) (mins) .631 4-8 atributing (1 Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600 0.600 0.600 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0	DIA (mm) 450 450 450 450	Secti Pipe/ Pipe/ Pipe/	ion Ty /Condu /Condu /Condu /Condu	pe Aut Desi it it it it
1.000 1.001 1.002 1.003 2.000	(m) 27.506 5.939 55.854 70.969 54.270	(m) 0.138 0.030 0.186 0.237 0.362	(1:X) 199.3 198.0 300.3 299.4	Total Tot Netv e I.Are (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08	(mins) (0-4 0 Area Con al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 0 0.00 9 4.00	ha) (mins) .631 4-8 .tributing (Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600 0.600 0.600 0.600 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0	DIA (mm) 450 450 450 450 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu	pe Aut Desi it it it it it
1.000 1.001 1.002 1.003 2.000	(m) 27.506 5.939 55.854 70.969	(m) 0.138 0.030 0.186 0.237 0.362	(1:X) 199.3 198.0 300.3 299.4	Total Tot Netv e I.Are (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08	(mins) (0-4 0 Area Con al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 0 0.00 9 4.00	ha) (mins) .631 4-8 .tributing (Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600 0.600 0.600 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0	DIA (mm) 450 450 450 450 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	ion Ty /Condu /Condu /Condu /Condu	pe Aut Desi it it it it it
1.000 1.001 1.002 1.003 2.000	(m) 27.506 5.939 55.854 70.969 54.270	(m) 0.138 0.030 0.186 0.237 0.362	(1:X) 199.3 198.0 300.3 299.4	Total Tot Netv I.Area (ha) 3 0.09 0 0.09 3 0.09 4 0.09 4 0.09 9 0.08 3 0.08	(mins) (0-4 0 Area Con al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 0 0.00 9 4.00 9 0.00	ha) (mins) .631 4-8 .tributing (Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0	DIA (mm) 450 450 450 450 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu	pe Aut Desi it it it it it
1.000 1.001 1.002 1.003 2.000 2.001	(m) 27.506 5.939 55.854 70.969 54.270 30.810	(m) 0.138 0.030 0.186 0.237 0.362 0.205	(1:X) 199.1 198.0 300.2 299.0 149.9 150.3	Total Tot Netv P I.Are (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08 3 0.08	(mins) (0-4 0 Area Cor al Pipe 7 work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 0 0.00 9 4.00 9 0.00 9 4.00 9 0.00	ha) (mins) .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 .631 .631 4-8 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .632 .631 .633 .631 .630 .630 .630 .630 .630 .630 .630 .630 .630 .630 .630 .630<	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0	DIA (mm) 450 450 450 450 300 300	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu	pe Aut Desi it it it it it it
1.000 1.001 1.002 1.003 2.000	(m) 27.506 5.939 55.854 70.969 54.270 30.810	(m) 0.138 0.030 0.186 0.237 0.362 0.205	(1:X) 199.3 198.0 300.3 299.4	Total Tot Netv P I.Are (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08 3 0.08	(mins) (0-4 0 Area Con al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 0 0.00 9 4.00 9 0.00	ha) (mins) .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 .631 .631 4-8 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .632 .631 .633 .631 .630 .630 .630 .630 .630 .630 .630 .630 .630 .630 .630 .630<	<pre>(ha) 0.708 ha) = 2 = 55.6 for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Fable Foul</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0 0	DIA (mm) 450 450 450 300 300 300	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu	pe Aut Desi it it it it it
1.000 1.001 1.002 1.003 2.000 2.001	(m) 27.506 5.939 55.854 70.969 54.270 30.810 30.810	(m) 0.138 0.030 0.186 0.237 0.362 0.205	(1:X) 199.1 198.0 300.1 299.4 149.1 150.1 150.1	Total Tot Netv P I.Area (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08 3 0.08 3 0.08 US/IL (m)	(mins) (0-4 0 Area Cor al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 9 4.00 9 4.00 9 0.00 9 4.00 9 0.00 Network E I.Area (ha)	ha) (mins) .631 4-8 	<pre>(ha) (.4a) (.708 ha) = 1 (.4b) = 55.6 for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Cable Foul (1/s)</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 300 300 300 Flow (s)	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu	pe Aut Desi it it it it it flow (1/s)
1.000 1.001 1.002 1.003 2.000 2.001 PN 1.0	(m) 27.506 5.939 55.854 70.969 54.270 30.810 8 Rai (mm/ 00 50	(m) 0.138 0.030 0.186 0.237 0.362 0.205	(1:X) 199.3 198.0 300.3 299.4 149.5 150.3 2.C. bins) 4.32	Total Tot Netv P I.Area (ha) 3 0.09 0.09 3 0.09 4 0.09 9 0.08 3 0.08 3 0.08 US/IL (m) 55.618	(mins) (0-4 0 Area Cor al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 9 4.00 9 4.00 9 0.00 9 4.00 9 0.00 Network E I.Area (ha) 0.090	ha) (mins) .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .632 .631 .633 .631 .633 .631 .633 .631 .633 .631	<pre>(ha) (</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 300 300 300 Flow (s) 0.0	Secti Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.44	ion Ty /Condu /C	pe Aut Desi it it it it it flow (1/s)
1.000 1.001 1.002 1.003 2.000 2.001	(m) 27.506 5.939 55.854 70.969 54.270 30.810 4 Rai (mm/ 00 50 01 50	(m) 0.138 0.030 0.186 0.237 0.362 0.205 in I hr) (m .00	(1:X) 199.1 198.0 300.1 299.4 149.1 150.1 2.C. tins) 4.32 4.39	Total Tot Netv P I.Area (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08 3 0.08 3 0.08 US/IL (m)	(mins) (0-4 0 Area Cor al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 9 4.00 9 4.00 9 0.00 9 4.00 9 0.00 Network E I.Area (ha)	ha) (mins) .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .600 0.0 .610 0.0 .620 0.0 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .631 .632 .631 .633 .631 .633 .631 .634 .631 <td><pre>(ha) (.4a) (.708 ha) = 1 (.4b) = 55.6 for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Cable Foul (1/s)</pre></td> <td>509 <u>SW2</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>DIA (mm) 450 450 450 300 300 300 Flow (s) 0.0 0.0</td> <td>Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.44 1.44</td> <td>ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu</td> <td>pe Aut Desi it it it it it flow (1/s) 0 12.2 2 24.4</td>	<pre>(ha) (.4a) (.708 ha) = 1 (.4b) = 55.6 for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Cable Foul (1/s)</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 300 300 300 Flow (s) 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.44 1.44	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu	pe Aut Desi it it it it it flow (1/s) 0 12.2 2 24.4
1.000 1.001 1.002 1.003 2.000 2.001 PN 1.00	(m) 27.506 5.939 55.854 70.969 54.270 30.810 N Rai (mm/ 00 50 01 50 02 50	(m) 0.138 0.030 0.186 0.237 0.362 0.205 in I hr) (m .00	(1:X) 199.1 198.0 299.4 149.2 150.3 c.c. iins) 4.32 4.39 5.18	Total Tot Netv P I.Area (ha) 3 0.09 0.09 3 0.09 4 0.09 9 0.08 3 0.08 3 0.08 US/IL (m) 55.618 55.480	(mins) (0-4 0 Area Cor al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 0 0.00 9 4.00 9 4.00 9 0.00 9 4.00 9 0.00 <u>Network</u> E I.Area (ha) 0.090 0.180	ha) (mins) .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631	<pre>(ha) (</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 300 300 300 Flow (s) 0.0 0.0	Imp Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ Pipe/ Nipe/ Nipe/ <td>ion Ty /Condu /C</td> <td>pe Aut Desi it it it it it flow (1/s) 5 12.2 2 24.4 3 36.6</td>	ion Ty /Condu /C	pe Aut Desi it it it it it flow (1/s) 5 12.2 2 24.4 3 36.6
1.000 1.001 1.002 1.003 2.000 2.001 PN 1.00 1.00 1.00	(m) 27.506 5.939 55.854 70.969 54.270 30.810 V Rai (mm/ 00 50 01 50 02 50 03 50	(m) 0.138 0.030 0.186 0.237 0.362 0.205 in T hr) (m .00 .00 .00 .00	(1:X) 199.3 198.0 300.3 299.4 149.4 150.3 2.C. tins) 4.32 4.39 5.18 6.20	Total Tot Netv P I.Area (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08 3 0.08 3 0.08 US/IL (m) 55.618 55.480 55.264	(mins) (0-4 0 Area Cor al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 9 4.00 9 4.00 9 0.00 9 4.00 9 0.00 9 4.00 9 0.00 <u>Network</u> E I.Area (ha) 0.090 0.180 0.270 0.360	ha) (mins) .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 4-8 .631 .631 .631 4-8 .631 .631 .631 .631 .632 .633 .633 .633 .630 .00 .600 .00 .600 .00 .600 .00	<pre>(ha) 0.708 ha) = 0 = 55.6 for k (mm) 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 300 300 300 300 Flow (s) 0.0 0.0 0.0 0.0	Imp Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ Pipe/ Nipe/ Nipe/ <td>ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu /2000 /2000 228.5 229.2 185.8 186.0</td> <td>pe Aut pe Aut Desi it It it It</td>	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu /2000 /2000 228.5 229.2 185.8 186.0	pe Aut pe Aut Desi it It it It
1.000 1.001 1.002 1.003 2.000 2.001 PN 1.00 1.00	(m) 27.506 5.939 55.854 70.969 54.270 30.810 V Rai (mm/ 00 50 01 50 02 50 03 50 00 50	(m) 0.138 0.030 0.186 0.237 0.362 0.205 in T hr) (m .00 .00 .00 .00	(1:X) 199.3 198.0 300.3 299.4 149.4 150.3 2.C. tins) 4.32 4.39 5.18 6.20 4.71	Total Tot Netv I.Area (ha) 3 0.09 0 0.09 3 0.09 4 0.09 9 0.08 3 0.08 0 0.08 3 0.08 US/IL (m) 55.618 55.480 55.450	(mins) (0-4 0 Area Cor al Pipe work Des a T.E. (mins) 0 4.00 0 0.00 0 0.00 0 0.00 9 4.00 9 4.00 9 0.00 9 4.00 9 0.00 <u>Network</u> E I.Area (ha) 0.090 0.180 0.270	ha) (mins) (mins) .631 4-8 .tributing (Volume (m ³) Sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(ha) 0.708 ha) = 0 = 55.6 for k (mm) 0.600</pre>	509 <u>SW2</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 300 300 300 510w (s) 0.0 0.0 0.0 0.0 0.0	Imp Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ Pipe/ Nipe/ Nipe/ <td>ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu /2000 /200 /200</td> <td>pe Aut pe Aut Desi it It it It</td>	ion Ty /Condu /Condu /Condu /Condu /Condu /Condu /Condu /Condu /2000 /200 /200	pe Aut pe Aut Desi it It it It

BFL C	onsult	ing E	Ingine	ers								Pa	ge 2
rmond	House				Ki	shoge							
Ipper	Ormond	Quay	7		Si	te 3							
ublin	7, Ir	eland	1		SW	[Catc]	hment	t Bl					licco
	, 5/02/2				De	signe	d hv	Darre	-n Ri	char	dson		icro
			an si	te3 Dr.		lecked	-				abon		rainaq
		KI SHC	ge_si	les_DI.		twork	-		L Des	ler			
innovy	20				Ne	LWOIK	2021	0.1.3					
				<u>Netwo</u>	ork Des	<u>sign T</u>	able	for	SW2				
PN	Length	Fall	Slope	I.Area	T.E.	Bas	e	k	HYD	DIA	Secti	lon Typ	e Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)			Desigr
2.002	9.502	0.063	3 150.8	0.089	0.00		0.0	0.600	0	300	Pipe/	'Condui	t 🔒
2.003	10.098				0.00			0.600	0		-	'Condui	
2.004	3.078	0.021	146.6	0.089	0.00		0.0	0.600	0	450	Pipe/	'Condui	
2.005	21.201	0.141	150.4	0.089	0.00		0.0	0.600	0	450	Pipe/	'Condui	t 🧯
1.004	19.168	0.064	299.5	0.089	0.00		0.0	0.600	0	450	Pipe/	'Condui	t 🤒
1.005	8.890	0.030	296.3	0.089	0.00		0.0	0.600	0	450	Pipe/	'Condui	
1.006	50.428	0.168	300.2	0.089	0.00		0.0	0.600	0		-	'Condui	t 🤒
	11.508				0.00			0.600	0			'Condui	t 🤒
1.008	22.972	0.077	298.3	0.089	0.00		0.0	0.600	0	450	Pipe/	'Condui	t 🔒
				N	<u>etwork</u>	Resu	lts 1	<u>Table</u>					
PI	N Ra	in '	T.C.	US/IL Σ	I.Area	ΣВа	ase	Foul	Add	Flow	Vel	Cap	Flow
	(mm/	'hr) (mins)	(m)	(ha)	Flow	(l/s)	(1/s)	(1/	's)	(m/s)	(l/s)	(1/s)
2.0	02 50	0.00	5.23	55.319	0.267		0.0	0.0		0.0	1.28	90.3	36.2
2.0	03 50	.00	5.33	55.256	0.356		0.0	0.0		0.0	1.65	263.0	48.2
2.0	04 50	.00		55.189	0.445		0.0	0.0		0.0		266.7	60.3
2.0	05 50	.00	5.58	55.168	0.534		0.0	0.0		0.0	1.66	263.3	72.3
1.0		0.00	6.47	55.027	0.983		0.0	0.0		0.0	1.17	186.0	133.1
1.0	05 50	.00	6.60	54.963	1.072		0.0	0.0		0.0	1.18	187.0	145.2
1.0	06 50	.00	7.31	54.933	1.161		0.0	0.0		0.0		185.8	
1.0													
1.0	07 50	.00	7.48	54.765	1.250		0.0	0.0		0.0	1.16	185.0	169.3

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B1	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

				110				<u></u>				
MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrog (mm)
SB9	57.109	1.491	Open	Manhole	1200	1.000	55.618	450				
SB8	57.246	1.766	Open	Manhole	1200	1.001	55.480	450	1.000	55.480	450	
SB7	57.298	1.848	Open	Manhole	1200	1.002	55.450	450	1.001	55.450	450	
SB6	57.236	1.972	Open	Manhole	1200	1.003	55.264	450	1.002	55.264	450	
SB5-6	58.000	2.114	Open	Manhole	1200	2.000	55.886	300				
SB5-5	58.106	2.582	Open	Manhole	1200	2.001	55.524	300	2.000	55.524	300	
SB5-4	58.108	2.789	Open	Manhole	1200	2.002	55.319	300	2.001	55.319	300	
SB5-3	58.119	2.863	Open	Manhole	1200	2.003	55.256	450	2.002	55.256	300	
SB5-2	58.080	2.891	Open	Manhole	1200	2.004	55.189	450	2.003	55.189	450	
SB5-1	58.038	2.870	Open	Manhole	1200	2.005	55.168	450	2.004	55.168	450	
SB5	57.814	2.787	Open	Manhole	1200	1.004	55.027	450	1.003	55.027	450	
									2.005	55.027	450	
SB4	58.013	3.050	Open	Manhole	1200	1.005	54.963	450	1.004	54.963	450	
SB3	58.143	3.210	Open	Manhole	1200	1.006	54.933	450	1.005	54.933	450	
SB2	57.934	3.169	Open	Manhole	1200	1.007	54.765	450	1.006	54.765	450	
SB1	57.946	3.219	Open	Manhole	1200	1.008	54.727	450	1.007	54.727	450	
SB0	57.818	3.168	Open	Manhole	700		OUTFALL		1.008	54.650	450	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SB9	704272.615	732941.906	704272.615	732941.906	Required	1
SB8	704290.130	732963.114	704290.130	732963.114	Required	1
SB7	704291.938	732968.772	704291.938	732968.772	Required	۲.
SB6	704286.574	733024.368	704286.574	733024.368	Required	-
SB5-6	704297.545	732922.176	704297.545	732922.176	Required	1
SB5-5	704327.384	732967.506	704327.384	732967.506	Required	1

DBFL Consulting Engineers		Page 4
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B1	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainage
Innovyze	Network 2020.1.3	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SB5-4	704344.563	732993.082	704344.563	732993.082	Required	1
SB5-3	704352.209	732998.723	704352.209	732998.723	Required	1
SB5-2	704357.856	733007.095	704357.856	733007.095	Required	1
SB5-1	704358.657	733010.067	704358.657	733010.067	Required	1
SB5	704357.212	733031.219	704357.212	733031.219	Required	- 1
SB4	704376.290	733033.069	704376.290	733033.069	Required	1
SB3	704381.475	733040.291	704381.475	733040.291	Required	1
SB2	704376.607	733090.483	704376.607	733090.483	Required	1
SB1	704383.817	733099.452	704383.817	733099.452	Required	1
SB0	704406.687	733101.621			No Entry	/ •

DBFL Consulting Engineers		Page 5
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B1	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	450	SB9	57.109	55.618	1.041	Open Manhole	1200
1.001	0	450	SB8	57.246	55.480	1.316	Open Manhole	1200
1.002	0	450	SB7	57.298	55.450	1.398	Open Manhole	1200
1.003	0	450	SB6	57.236	55.264	1.522	Open Manhole	1200
2.000	0	300	SB5-6	58.000	55.886	1.814	Open Manhole	1200
2.001	0	300	SB5-5	58.106	55.524	2.282	Open Manhole	1200
2.002	0	300	SB5-4	58.108	55.319	2.489	Open Manhole	1200
2.003	0	450	SB5-3	58.119	55.256	2.413	Open Manhole	1200
2.004	0	450	SB5-2	58.080	55.189	2.441	Open Manhole	1200
2.005	0	450	SB5-1	58.038	55.168	2.420	Open Manhole	1200
1.004	0	450	SB5	57.814	55.027	2.337	Open Manhole	1200
1.005	0	450	SB4	58.013	54.963	2.600	Open Manhole	1200
1.006	0	450	SB3	58.143	54.933	2.760	Open Manhole	1200
1.007	0	450	SB2	57.934	54.765	2.719	Open Manhole	1200
1.008	0	450	SB1	57.946	54.727	2.769	Open Manhole	1200

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	27.506	199.3	SB8	57.246	55.480	1.316	Open Manhole	1200
1.001	5.939	198.0	SB7	57.298	55.450	1.398	Open Manhole	1200
1.002	55.854	300.3	SB6	57.236	55.264	1.522	Open Manhole	1200
1.003	70.969	299.4	SB5	57.814	55.027	2.337	Open Manhole	1200
2.000	54.270	149.9	SB5-5	58.106	55.524	2.282	Open Manhole	1200
2.001	30.810	150.3	SB5-4	58.108	55.319	2.489	Open Manhole	1200
2.002	9.502	150.8	SB5-3	58.119	55.256	2.563	Open Manhole	1200
2.003	10.098	150.7	SB5-2	58.080	55.189	2.441	Open Manhole	1200
2.004	3.078	146.6	SB5-1	58.038	55.168	2.420	Open Manhole	1200
2.005	21.201	150.4	SB5	57.814	55.027	2.337	Open Manhole	1200
1.004	19.168	299.5	SB4	58.013	54.963	2.600	Open Manhole	1200
1.005	8.890	296.3	SB3	58.143	54.933	2.760	Open Manhole	1200
1.006	50.428	300.2	SB2	57.934	54.765	2.719	Open Manhole	1200
1.007	11.508	302.8	SB1	57.946	54.727	2.769	Open Manhole	1200
1.008	22.972	298.3	SB0	57.818	54.650	2.718	Open Manhole	700

DBFL Consulting Engin	CGTD			- h				Page 6
Ormond House				shoge				1
Upper Ormond Quay			Si	te 3				
Dublin 7, Ireland			SW	Catchmen	it Bl			Micro
Date 25/02/2025			De	signed by	Darren	Richard	son	
File 250127 Kishoge S	ite3	Dr		ecked by				Drainac
Innovyze	<u>+ 000 </u> _			twork 202				
IIIIOVYZE			Ne	LWOIK ZUZ	0.1.5			
		Are	ea Su	mmary for	SW2			
Pipe	PIMP	PIMP 1	PIMP	Gross	Imp.	Pipe Tota	1	
-				Area (ha) A		(ha)		
1 000			1.0.0					
1.000			100	0.090	0.090	0.09		
1.001			100	0.090		0.09		
1.002			100	0.090	0.090	0.09		
1.003			100	0.090	0.090	0.09		
2.000			100	0.089		80.0		
2.001			100	0.089		80.0		
2.002			100	0.089		80.0		
2.003			100	0.089		80.0		
2.004			100	0.089		80.0		
2.005			100	0.089		80.0		
1.004			100	0.089		80.0		
1.005			100	0.089		80.0		
1.006			100	0.089		0.08		
1.007		_	100	0.089 0.089		80.0		
1.008	-	-	100		0.089	0.08		
				m ~ + ~ 1	motol 1	m = + -		
				Total 1 339				
				Total 1.339		Tota 1.33		
<u>F:</u>	ree E	lowin	<u>ng Ou</u>		1.339	1.33		
Outfall	1 Oi	utfall	C. Le	1.339 tfall Det evel I. Lev	1.339 cails for rel Min	1.33 <u>SW2</u> D,L	9 W	
	1 Oi			1.339 tfall Det evel I. Lev	1.339 cails for rel Min	1.33 <u>SW2</u>	9 W	
Outfal Pipe Numb	1 Oi	utfall	C. Le (m	1.339 tfall Det evel I. Lev	1.339 zails for rel Min I. Leva (m)	1.33 <u>SW2</u> D,L el (mm) (9 W	
Outfal Pipe Numb	l Ou ber	seo	С. Le (m	1.339 tfall Det evel I. Lev) (m) .818 54.6	1.339 zails for rel Min I. Leva (m) 550 0.00	1.33 <u>SW2</u> D,L el (mm) (9 W mm)	
Outfall Pipe Numb 1.(1 Ou ber 008 <u>S</u>	sbo imula	C. Le (m 57. tion	1.339 tfall Det evel I. Lev) (m) .818 54.6 <u>Criteria</u>	1.339 tails for rel Min I. Leve (m) 550 0.00 for SW2	1.33 <u>SW2</u> D,L эl (mm) (9 W mmn) 0	0. 000
Outfall Pipe Numb 1.(Volumetric F	l Or ber 2008 <u>S</u> Runoff	SB0	C. Le (m 57. tion	1.339 <u>tfall Det</u> evel I. Lev) (m) .818 54.6 <u>Criteria</u> 0 Additi	1.339 tails for rel Min I. Leve (m) 550 0.00 for SW2 onal Flow	1.33 <u>SW2</u> D,L ∋l (mm) (00 700 - % of To	9 W mm) 0 btal Fl	
Outfall Pipe Numb 1.(Volumetric F Areal Reduc	l Ou ber 2008 <u>S</u> Runoff ction	sB0 imula Coeff Factor	C. Le (m 57. tion 0.75 1.00	1.339 tfall Det evel I. Lev) (m) .818 54.6 <u>Criteria</u> 0 Additi 0 MA	1.339 tails for rel Min I. Leve (m) 550 0.00 for SW2 onal Flow DD Factor	1.33 <u>SW2</u> D,L ∋1 (mm) (00 700 - % of To * 10m³/ha	9 W mm) 0 btal Fl	ge 2.000
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S	l Ou ber 2008 Sunoff stion Start	SB0 imula Coeff Factor (mins)	C. Le (m 57. tion 0.75 1.00	1.339 tfall Det evel I. Lev) (m) .818 54.6 <u>Criteria</u> 0 Additi 0 MA	1.339 tails for rel Min I. Lev (m) 550 0.00 for SW2 onal Flow DD Factor I	1.33 <u>SW2</u> D,L al (mm) (00 700 - % of To * 10m³/ha nlet Coef	9 W mm) 0 otal Fl stora ffiecie	ge 2.000 nt 0.800
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start	l on ber 2008 Sunoff Start : Leve	SB0 imula Coeff Factor (mins) I (mm)	C. Le (m 57. tion 0.75 1.00	1.339 tfall Det evel I. Lev) (m) .818 54.6 <u>Criteria</u> 0 Additi 0 MA 0 MA 0 Flow per	1.339 tails for rel Min I. Lev (m) 550 0.00 for SW2 onal Flow DD Factor I	1.33 D,L D,L D) 700 - % of To * 10m³/ha nlet Coef r Day (1/	9 W mm) 0 otal Fl Stora ffiecie ýper/da	ge 2.000 nt 0.800 y) 0.000
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe	l on ber 2008 Sunoff Start : Leve eff (G	SB0 imula Coeff Factor (mins) (mm) Clobal)	C. Le (m 57. tion 0.75 1.00 0.50	1.339 tfall Det evel I. Lev) (m) .818 54.6 <u>Criteria</u> 0 Additi 0 MA 0 0 Flow per 0	1.339 tails for rel Min I. Lev (m) 550 0.00 for SW2 onal Flow DD Factor I Person pe	1.33 <u>SW2</u> D,L al (mm) (00 700 - % of To * 10m³/ha nlet Coef	9 W mm) 0 otal Fl Stora ffiecie ýper/da ne (min	ge 2.000 nt 0.800 y) 0.000 s) 60
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start	l on ber 2008 Sunoff Start : Leve eff (G	SB0 imula Coeff Factor (mins) (mm) Clobal)	C. Le (m 57. tion 0.75 1.00 0.50	1.339 tfall Det evel I. Lev) (m) .818 54.6 <u>Criteria</u> 0 Additi 0 MA 0 0 Flow per 0	1.339 tails for rel Min I. Lev (m) 550 0.00 for SW2 onal Flow DD Factor I Person pe	1.33 D,L D,L D) 700 - % of To * 10m³/ha nlet Coef r Day (1/ Run Tim	9 W mm) 0 otal Fl Stora ffiecie ýper/da ne (min	ge 2.000 nt 0.800 y) 0.000 s) 60
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe	l on ber 2008 Sunoff Start Leve eff (Gectare	SB0 imula Coeff Factor (mins) (mm) Clobal) (l/s)	C. Le (m 57. tion 0.75 1.00 0.50 0.00	1.339 tfall Det evel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 MA 0 0 Flow per 0 0	1.339 tails for rel Min I. Lev (m) 550 0.00 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu	1.33 D,L D,L al (mm) (00 700 - % of To * 10m³/ha nlet Coef r Day (1/ Run Tin t Interva	9 W mm) 0 otal Fl Stora ffiecie (per/da he (min 1) (min	ge 2.000 nt 0.800 y) 0.000 s) 60
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of S	l on ber 2008 Sunoff Start : Leve eff (G ectare Input f Onl:	SB0 SB0 Coeff Factor (mins) (mm) Clobal) (l/s) Hydrog ine Cor	C. Le (m 57. 1.00 0.75 1.00 0.50 0.00 graphs	1.339 tfall Det evel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 MA 0 0 Flow per 0 0 1.339 0 Additi 0 Slow per 0 Number 1.339	1.339 tails for rel Min I. Leva (m) 550 0.00 550 0.00 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu of Storage of Time/A:	1.33 D,L D,L D) (mm) (D) 700 - % of To * 10m ³ /ha nlet Coef r Day (1/ Run Tin t Interva e Structu	W mm) 0 otal Fl Stora ffiecie (per/da he (min 1) (min res 0 ams 0	ge 2.000 nt 0.800 y) 0.000 s) 60
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of S	l on ber 2008 Sunoff Start : Leve eff (G ectare Input f Onl:	SB0 SB0 Coeff Factor (mins) (mm) Clobal) (l/s) Hydrog ine Cor	C. Le (m 57. 1.00 0.75 1.00 0.50 0.00 graphs	1.339 tfall Det evel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 MA 0 0 Flow per 0 0 0 0 Number	1.339 tails for rel Min I. Leva (m) 550 0.00 550 0.00 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu of Storage of Time/A:	1.33 D,L D,L D) (mm) (D) 700 - % of To * 10m ³ /ha nlet Coef r Day (1/ Run Tin t Interva e Structu	W mm) 0 otal Fl Stora ffiecie (per/da he (min 1) (min res 0 ams 0	ge 2.000 nt 0.800 y) 0.000 s) 60
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of S	l on ber 2008 Sunoff Start : Leve eff (G ectare Input f Onl:	SB0 SB0 Coeff Factor (mins) (mm) Clobal) (l/s) Hydrog ine Cor	C. Le (m 57. 1.00 0.75 1.00 0.50 0.00 graphs	1.339 tfall Det evel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 MA 0 0 Flow per 0 0 1.339 0 Additi 0 Slow per 0 Number 1.339	1.339 tails for rel Min I. Leva (m) 550 0.00 550 0.00 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu of Storage of Time/A:	1.33 D,L D,L D) (mm) (D) 700 - % of To * 10m ³ /ha nlet Coef r Day (1/ Run Tin t Interva e Structu	W mm) 0 otal Fl Stora ffiecie (per/da he (min 1) (min res 0 ams 0	ge 2.000 nt 0.800 y) 0.000 s) 60
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of S	L Ou Doer 2008 Sunoff Start Leve eff (G ectare Input f Onl: Offl:	SB0 imula Coeff Factor (mins) (l (mm) (lobal) (l/s) Hydrog ine Cor ine Cor	C. Le (m 57. 1.00 0.75 1.00 0.50 0.00 graphs htrols	1.339 tfall Det evel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 MA 0 0 Flow per 0 0 1.339 0 Additi 0 Slow per 0 Number 1.339	1.339 tails for rel Min I. Leve (m) 550 0.00 for SW2 onal Flow DD Factor I Person per Output of Storage of Real T:	1.33 D,L D,L D) (mm) (D) 700 - % of To * 10m ³ /ha nlet Coef r Day (1/ Run Tin t Interva e Structu	W mm) 0 otal Fl Stora ffiecie (per/da he (min 1) (min res 0 ams 0	ge 2.000 nt 0.800 y) 0.000 s) 60
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of Number of	l or oper 2008 Sunoff Start : Leve eff (G ectare Input f Onl: Offl:	SB0 imula Coeff Factor (mins) (mm) Cobal) (l(s) Hydroc ine Cor ine Cor Synthe	C. Le (m 57. 1.00 0.75 1.00 0.50 0.00 graphs htrols	1.339 tfall Det avel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 MA 0 Flow per 0 3 0 Number 3 0 Number <u>Rainfall</u>	1.339 zails for rel Min I. Leva (m) 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu of Storage of Time/A: of Real T: Details	1.33 <u>SW2</u> D,L D,L J (mm) (00 700 - % of To * 10m ³ /ha nlet Coef r Day (1/ Run Tim t Interva e Structu rea Diagr ime Contr	W mmm) 0 btal Fl Stora ffiecie (per/da ne (min 1) (min res 0 ams 0 ols 0	ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of Number of Number of Rainfall	L Or DOR CONS Cunoff Ction Start Leve Eff (G Cactare Input f Onl: Offl: Model	SB0 imula Coeff Factor (mins) (mm) Cobal) (l(s) Hydroc ine Cor ine Cor Synthe	C. Le (m 57. 1.00 0.75 1.00 0.50 0.00 graphs htrols	1.339 tfall Det avel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 MA 0 0 Flow per 0 0 0 Slow per 0 0 8 0 Number 8 0 Number 8 0 Number 8 0 Number Rainfall FSR	1.339 2ails for rel Min I. Leva (m) 550 0.00 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu of Storage of Time/A: of Real T: Details	1.33 D,L D,L D,L 1 (mm) (00 700 - % of To * 10m ³ /ha nlet Coef r Day (1/ Run Tim t Interva e Structu cea Diagr ime Contr Profile T	W mmm) 0 btal Fl Stora ffiecie /per/da he (min hl (min res 0 ams 0 ols 0 'ype Su	ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of Number of Number of Rainfall Return Period (y	L Ou DOR COUR C	SB0 imula Coeff Factor (mins) (mm) Cobal) (l(s) Hydrog ine Cor ine Cor Synthe	C. Le (m 57. tion 0.75 1.00 0.50 0.50 0.00 graphs atrols atrols	1.339 tfall Det avel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 MA 0 0 Flow per 0 0 0 Slow per 0 0 Number 8 0 Number Rainfall FSR 100	1.339 zails for rel Min I. Leva (m) 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu of Storage of Time/A: of Real T: Details	1.33 D,L D,L D,L D, C D, C D, C D, C D, C D, C D, C D, C	<pre>% % mm) 0 btal Fl a Stora ffiecie fper/da he (min hl (min res 0 ams 0 ols 0 Cype Su her) 0</pre>	ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1 mmer .750
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of Number of Number of Rainfall Return Period (y	L Ou DOR COUR C	stfall Name SB0 imula Coeff Factor (mins) (mm) Cobal) (l(mm) Cobal) (l(rs) Hydroc ine Cor ine Cor Synthe	C. Le (m 57. tion 0.75 1.00 0.50 0.50 0.00 graphs atrols atrols	1.339 tfall Det evel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 Additi 0 Flow per 0 0 Sol Number sol Number sol Number Rainfall FSR 100 nd Ireland	1.339 zails for rel Min I. Leva (m) 550 0.00 for SW2 onal Flow DD Factor I Person pe Outpu of Storage of Time/A: of Real T: Details	1.33 D,L D,L D,L D,C D,C D,C D,C D,C D,C D,C D,C D,C D,C	<pre>9 W mm) 0 btal Fl a Stora fiecie /per/da te (min n (min res 0 ams 0 ols 0 Cype Su ter) 0 cer) 0 </pre>	ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1 mmer .750 .840
Outfall Pipe Numb 1.(Volumetric F Areal Reduc Hot S Hot Start Manhole Headloss Coe Foul Sewage per he Number of Number of Number of Rainfall Return Period (y F	L ON DOR COOR Runoff Start : Leve eff (G ectare Input f Onl: Offl: Qffl: Model years) Region	stfall Name SB0 imula Coeff Factor (mins) (mm) Cobal) (l(rm) Slobal) (l(rs) Hydroc ine Cor ine Cor Synthe	C. Le (m 57. tion 0.75 1.00 0.50 0.50 0.00 graphs atrols atrols	1.339 tfall Det evel I. Lev (m) .818 54.6 <u>Criteria</u> 0 Additi 0 Additi 0 Additi 0 Flow per 0 0 Sol Number sol Number sol Number Rainfall FSR 100 nd Ireland	1.339 tails for rel Min I. Leve (m) 550 0.00 for SW2 onal Flow DD Factor I Person per Output of Storage of Time/A: of Real T: Details Storm Dur	1.33 D,L D,L D,L D,C D,C D,C D,C D,C D,C D,C D,C D,C D,C	<pre>9 W mm) 0 btal Fl a Stora fiecie /per/da te (min n (min res 0 ams 0 ols 0 Cype Su ter) 0 cer) 0 </pre>	ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1 mmer .750 .840

BFL Consulting Engineers					Pa	ige 7
prmond House	Kishoge	9				-
ipper Ormond Quay	Site 3					
publin 7, Ireland	SW Cato	chment	В1			
ate 25/02/2025				Richardso		licro
ile 250127 Kishoge Site3 Dr	Checked	-			"	rainage
				Dester		
nnovyze	Networ	<u> </u>	1.3			
Summary of Critical Resul	-			(Rank 1)	for SW	<u>12</u>
Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (l/s) (0 0 0.500 Flo	ddition. MADD	al Flow Factor	* 10m³/ha S Inlet Coeffi	Storage 2 Lecient (2.000 0.800
Number of Input Hydrogra Number of Online Cont Number of Offline Cont	rols 0 N	umber of	Time/A	rea Diagram.	s 0	
<u>Synthe</u> Rainfall Model Region Scotl M5-60 (mm)	tic Rain: land and	FSR Ireland	Rat Cv (Sun	tio R 0.275 nmer) 0.750 nter) 0.840		
Margin for Flood Risk W Analys	-	tep Fi		DVD Status tia Status (
Profile(s) Duration(s) (mins)				Summer and 240, 360, 43 , 2880, 4320	80, 600,	
	120,	, 114	0, 2100	7200, 864		
Return Period(s) (years)				1,	30, 100	
Climate Change (%)				20	, 20, 20	
				20		climate chan
				20		climate chan
			Water	Surcharged	Flooded	Climate chan
US/MH		US/CL	Level	Surcharged	Volume	Flow /
US/MH PN Name Event		US/CL (m)		Surcharged		climate chan
PN Name Event	er ⊺+20%	(m)	Level (m)	Surcharged Depth (m)	Volume (m³)	Flow / Cap.
		(m) 57.109	Level (m) 56.684	Surcharged Depth	Volume	Flow / Cap. 0.18
PNNameEvent1.000SB915 minute100 year Wint	er I+20%	(m) 57.109 57.246	Level (m) 56.684 56.675	Surcharged Depth (m) 0.616	Volume (m³) 0.000	Flow / Cap. 0.18 0.38
PNNameEvent1.000SB915 minute100 yearWint1.001SB815 minute100 yearWint	er I+20% er I+20%	(m) 57.109 57.246 57.298	Level (m) 56.684 56.675 56.668	Surcharged Depth (m) 0.616 0.745	Volume (m ³) 0.000 0.000	Flow / Cap. 0.18 0.38 0.47
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint	cer I+20% cer I+20% cer I+20% cer I+20%	(m) 57.109 57.246 57.298 57.236 58.000	Level (m) 56.684 56.675 56.668 56.570 56.921	Surcharged Depth (m) 0.616 0.745 0.768	Volume (m ³) 0.000 0.000 0.000	Flow / Cap. 0.18 0.38 0.47 0.45
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint	cer I+20% cer I+20% cer I+20% cer I+20% cer I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889	Surcharged Depth (m) 0.616 0.745 0.768 0.856	Volume (m ³) 0.000 0.000 0.000 0.000	Flow / Cap. 0.18 0.38 0.47 0.45 0.38
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint	cer I+20% cer I+20% cer I+20% cer I+20% cer I+20% cer I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.18 0.38 0.47 0.45 0.38 0.56 1.07
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint	ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap . 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint	ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119 58.080	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705 56.607	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999 0.968	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54 0.90
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint	er I+20% er I+20% er I+20% er I+20% er I+20% er I+20% er I+20% er I+20% er I+20% er I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119 58.080 58.038	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705 56.607 56.592	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999 0.968 0.974	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap . 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54 0.90 0.65
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint	ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20% ter I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119 58.080 58.038 57.814	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705 56.607 56.592 56.469	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999 0.968 0.974 0.992	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cimate chan Flow / Cap. 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54 0.90 0.65 1.54
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint 2.004 SB5 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint 2.005 SB4 15 minute 100 year Wint	ter I+20% ter I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119 58.080 58.038 57.814 58.013	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705 56.607 56.592 56.607 56.592 56.469 56.302	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999 0.968 0.974 0.992 0.889	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Climate chan Flow / Cap. 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54 0.90 0.65 1.54 1.99
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint 2.004 SB5 15 minute 100 year Wint 1.004 SB5 15 minute 100 year Wint 1.005 SB4 15 minute 100 year Wint	ter I+20% ter I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119 58.080 58.038 57.814 58.013 58.143	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705 56.607 56.592 56.607 56.592 56.469 56.302 56.100	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999 0.968 0.974 0.992 0.889 0.717	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Climate chan Flow / Cap. 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54 0.90 0.65 1.54 1.99 1.59
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint 2.004 SB5 15 minute 100 year Wint 1.004 SB5 15 minute 100 year Wint 1.005 SB4 15 minute 100 year Wint	ter I+20% ter I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119 58.080 58.038 57.814 58.013 58.143 58.143 57.934	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705 56.607 56.592 56.607 56.592 56.469 56.302 56.302 56.100 55.655	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999 0.968 0.974 0.992 0.889 0.717	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Climate chan Flow / Cap. 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54 0.90 0.65 1.54 1.99 1.59 2.15
PN Name Event 1.000 SB9 15 minute 100 year Wint 1.001 SB8 15 minute 100 year Wint 1.002 SB7 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 1.003 SB6 15 minute 100 year Wint 2.000 SB5-6 15 minute 100 year Wint 2.001 SB5-5 15 minute 100 year Wint 2.002 SB5-4 15 minute 100 year Wint 2.003 SB5-3 15 minute 100 year Wint 2.004 SB5-2 15 minute 100 year Wint 2.005 SB5-1 15 minute 100 year Wint 2.004 SB5 15 minute 100 year Wint 1.004 SB5 15 minute 100 year Wint 1.005 SB4 15 minute 100 year Wint	ter I+20% ter I+20%	(m) 57.109 57.246 57.298 57.236 58.000 58.106 58.108 58.119 58.080 58.038 57.814 58.013 58.143 58.143 57.934	Level (m) 56.684 56.675 56.668 56.570 56.921 56.889 56.786 56.705 56.607 56.592 56.607 56.592 56.469 56.302 56.302 56.100 55.655	Surcharged Depth (m) 0.616 0.745 0.768 0.856 0.735 1.065 1.167 0.999 0.968 0.974 0.992 0.889 0.717 0.440	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Climate chan Flow / Cap. 0.18 0.38 0.47 0.45 0.38 0.56 1.07 0.54 0.90 0.65 1.54 1.99 1.59 2.15

DBFL Consulting Engineers	Page 8	
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B1	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	1

Summary of Critical Results by Maximum Level (Rank 1) for SW2

PN	US/MH Name	Overflow (l/s)	Maximum Vol (m³)	Pipe Flow (l/s)	Status
1.000	SB9		1.200	34.3	SURCHARGED
1.001	SB8		5.530	52.2	SURCHARGED
1.002	SB7		2.126	80.1	SURCHARGED
1.003	SB6		10.163	78.9	SURCHARGED
2.000	SB5-6		1.165	32.4	SURCHARGED
2.001	SB5-5		5.289	46.0	SURCHARGED
2.002	SB5-4		3.746	67.5	SURCHARGED
2.003	SB5-3		2.220	90.7	SURCHARGED
2.004	SB5-2		3.014	113.7	SURCHARGED
2.005	SB5-1		1.904	136.8	SURCHARGED
1.004	SB5		15.902	229.9	SURCHARGED
1.005	SB4		4.366	250.6	SURCHARGED
1.006	SB3		2.537	268.5	SURCHARGED
1.007	SB2		8.830	286.1	SURCHARGED
1.008	SB1		2.383	304.2	SURCHARGED

Ormond		ing E	ngine	ers							Pa	ige 1
	House				Ki	shoge						
Jpper	Ormond	Quay			Si	te 3						
	7, Ir				-	I Catchmen					N	licro
Date 2	5/02/2	025			De	esigned by	Darre	en Ri	char	dson		raina
File 2	50127_	Kisho	ge_Si	.te3_D	r Ch	necked by	Diete	r Bes	ter			
innovy	ze				Ne	etwork 202	0.1.3					
		STORI	<u>m sev</u>	ier des	SIGN by	the Modif	ied R	atior	al N	<u>letho</u>	<u>d</u>	
				<u>D</u>	<u>esign C</u>	riteria fo	or SW3	<u>3</u>				
			Pi	pe Size	es STANDA	ARD Manhole	Sizes	STANDA	ARD			
			F	SR Rain	fall Mod	el - Scotlam	nd and	Irela	nd			
		Retu	rn Pe	riod (ye		100	7 -1 -1 -		<u></u>	ata a	PIMP	. ,
					(mm) 16 tio R 0		Add H Mir				-	(%) (m) 0.2
				fall (m	m/hr)	50	Max	kimum	Backc	lrop H	eight	(m) 1.5
Maximu	um Time					30 Min De	-	-	-			
	V			5	s/ha) 0 oeff. 0		Vel fo in Slop			-	-	/s) 1. :X) 5
						with Level S	-		1		(-	, 0
					-	Diagram						
				<u></u>		-		<u>10</u>				
					-	rea Time (ha) (mins)						
					0 4 0		0 600					
					0-4 0	.577 4-8	0.603					
				Total		.577 4-8		1.180	←	-	Catchm	
					Area Cor	tributing (ha) =		←	-	Catchme	
					Area Cor	I	ha) =		←	-		
				Tot	Area Con al Pipe	tributing (ha) = = 40.9	913	<	-		
PN	Length	Fall	Slope	Tot <u>Netv</u>	Area Con al Pipe	' ntributing (Volume (m³)	ha) = = 40.9	913		Imp		e Area
PN	Length (m)	Fall (m)	Slope (1:X)	Tot <u>Netw</u> a I.Area	Area Con al Pipe ' work Des a T.E.	volume (m³)	ha) = = 40.9 e for	913 <u>SW3</u>		Imp	ermeable	e Area
	(m)	(m)	(1:X)	Tot <u>Netv</u> e I.Area) (ha)	Area Con al Pipe work Des a T.E. (mins)	volume (m ³) sign Table Base Flow (l/s)	ha) = = 40.9 : for k (mm)	913 <u>SW3</u> HYD	DIA (mm)	Imp	ermeable	e Area
1.000 1.001	(m) 33.815 9.484	(m) 0.169 0.047	(1:X) 200.2 201.8	Tot <u>Netw</u> e I.Area (ha) 1 0.111 3 0.111	Area Con al Pipe ' work Des a T.E. (mins) 8 4.00	Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0	ha) = = 40.9 : for k (mm) 0.600 0.600	913 SW3 HYD SECT	DIA (mm) 450 450	Imp Secti Pipe/ Pipe/	ermeable	e Area
1.000 1.001 1.002	(m) 33.815 9.484 2.872	(m) 0.169 0.047 0.014	(1:X) 200.2 201.8 205.2	Tot <u>Netv</u> e I.Area (ha) 1 0.113 3 0.113 1 0.113	Area Con al Pipe ' work Des a T.E. (mins) 8 4.00 8 0.00 8 0.00	Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.600 0.600	913 <u>SW3</u> HYD SECT 0 0	DIA (mm) 450 450 450	Imp Secti Pipe/ Pipe/ Pipe/	ermeable ion Typ (Condui (Condui (Condui	e Area
1.000 1.001 1.002	(m) 33.815 9.484	(m) 0.169 0.047 0.014	(1:X) 200.2 201.8 205.2	Tot <u>Netv</u> e I.Area (ha) 1 0.113 3 0.113 1 0.113	Area Con al Pipe ' work Des a T.E. (mins) 8 4.00 8 0.00 8 0.00	Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0	ha) = = 40.9 : for k (mm) 0.600 0.600	013 <u>SW3</u> HYD SECT 0 0	DIA (mm) 450 450 450	Imp Secti Pipe/ Pipe/ Pipe/	ermeable	e Area
1.000 1.001 1.002 1.003	(m) 33.815 9.484 2.872	(m) 0.169 0.047 0.014 0.171	(1:X) 200.2 201.8 205.2 199.9	Tot <u>Netv</u> i 1.Area i 0.112 0.112 1 0.112 0.112 0.112	Area Con al Pipe ' work Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00	volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.600 0.600	913 <u>SW3</u> HYD SECT 0 0	DIA (mm) 450 450 450 450	Secti Pipe/ Pipe/ Pipe/	ermeable ion Typ (Condui (Condui (Condui	e Area
1.000 1.001 1.002 1.003	(m) 33.815 9.484 2.872 34.190	(m) 0.169 0.047 0.014 0.171	(1:X) 200.2 201.8 205.2 199.9	Tot <u>Netv</u> i 1.Area (ha) 1 0.111 3 0.111 3 0.111 9 0.111 9 0.111	Area Con al Pipe ' vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 0.00 8 0.00	volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0	ha) = = 40.9 <u>k</u> (mm) 0.600 0.600 0.600 0.600 0.600	913 <u>SW3</u> HYD SECT 0 0 0 0	DIA (mm) 450 450 450 450	Secti Pipe/ Pipe/ Pipe/	ermeable ion Type (Condui (Condui (Condui	e Area
1.000 1.001 1.002 1.003 2.000	(m) 33.815 9.484 2.872 34.190 27.387	(m) 0.169 0.047 0.014 0.171	(1:X) 200.2 201.8 205.2 199.9	Tot <u>Netw</u> i 1.Area (ha) 1 0.111 3 0.111 9 0.111 9 0.111	Area Con al Pipe vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 4.00 8 4.00	' Volume (m ³) Sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ha) = = 40.9 : for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600	913 <u>SW3</u> HYD SECT 0 0 0 0 0	DIA (mm) 450 450 450 225	Secti Pipe/ Pipe/ Pipe/ Pipe/	ermeable ion Typ /Condui /Condui /Condui	e Area
1.000 1.001 1.002 1.003	(m) 33.815 9.484 2.872 34.190 27.387 N Ra	(m) 0.169 0.047 0.014 0.171 0.137	(1:X) 200.2 201.8 205.2 199.9	Tot <u>Netw</u> i 1.Area (ha) 1 0.111 3 0.111 9 0.111 9 0.111	Area Con al Pipe ' vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 0.00 8 0.00	' Volume (m ³) Sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul	213 <u>SW3</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 225 225	Secti Pipe/ Pipe/ Pipe/ Pipe/ Vel	ermeable ion Type (Condui (Condui (Condui	e Area
1.000 1.001 1.002 1.003 2.000	(m) 33.815 9.484 2.872 34.190 27.387 N Ra. (mm/	(m) 0.169 0.047 0.014 0.171 0.137 in T 'hr) (n	(1:X) 200.2 201.8 205.2 199.9 199.9 199.9	Tot <u>Netv</u> e I.Area (ha) 1 0.111 3 0.111 9 0.11	Area Cor al Pipe - vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 4.00 8 4.00 <u>Network</u> E I.Area (ha)	<pre>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	ha) = = 40.9 = for k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Foul (l/s)	213 <u>SW3</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 225 225 Flow s)	Secti Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	ermeable ion Typ (Condui (Condui (Condui (Condui (Condui (Condui (Condui	e Area
1.000 1.001 1.002 1.003 2.000	(m) 33.815 9.484 2.872 34.190 27.387 N Ra (mm/	(m) 0.169 0.047 0.014 0.171 0.137	(1:X) 200.2 201.8 205.2 199.9 199.9 2.C. hins) 4.39	Tot <u>Netw</u> i 1.Area i 0.1111 0.1111 0.111 0.111 0.111 0.111	Area Cor al Pipe work Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 4.00 8 4.00 Νetwork Σ I.Area	<pre>volume (m³) volume (m³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 <u>0.600</u> <u>0.600</u> <u>0.600</u> 0.6000 0.6000 0.6000 0.6000 0.6000 0.600000000	213 <u>SW3</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 225 225 Flow s)	Secti Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.43	ermeable ion Typ (Condui (Condui (Condui (Condui (Condui	e Area
1.000 1.001 1.002 1.003 2.000 PI	(m) 33.815 9.484 2.872 34.190 27.387 N Ra (mm/ 000 50 001 50	(m) 0.169 0.047 0.014 0.171 0.137 in ¶ 'hr) (n	(1:X) 200.2 201.8 205.2 199.9 199.9 199.9 c.c. hins) 4.39 4.50	Tot <u>Netv</u> e I.Area (ha) 1 0.111 3 0.111 9 0.11	Area Cor al Pipe vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 4.00 8 4.00 Νetwork Σ I.Area (ha) 0.118	<pre> volume (m³) volume (m³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0	213 <u>SW3</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 225 225 Flow s) 0.0 0.0	Imp Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ 1.43 1.43	ermeable ion Typ /Condui /Cond	e Area
1.000 1.001 1.002 1.003 2.000 P1 1.0 1.0	(m) 33.815 9.484 2.872 34.190 27.387 N Rai (mm/ 000 50 001 50 002 50	(m) 0.169 0.047 0.014 0.171 0.137 in ¶ /hr) (n 0.00	(1:X) 200.2 201.8 205.2 199.9 199.9 199.9 c.c. hins) 4.39 4.50 4.54	Tot <u>Netv</u> e I.Area (ha) 1 0.111 3 0.111 9 0.11	Area Cor al Pipe 7 vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 4.00 8 4.00 Network E I.Area (ha) 0.118 0.236	<pre> volume (m³) volume (m³) sign Table Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.0000 0.0000 0.0000 0.000000	213 <u>SW3</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 225 225 Flow s) 0.0 0.0	Imp Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ Pipe/ Nipe/ Nipe/ <td>ermeable ion Type /Condui /Con</td> <td>e Area</td>	ermeable ion Type /Condui /Con	e Area
1.000 1.001 1.002 1.003 2.000 PT 1.0 1.0 1.0	(m) 33.815 9.484 2.872 34.190 27.387 N Ra (mm/ 000 50 001 50 002 50 003 50	(m) 0.169 0.047 0.014 0.171 0.137 in T (hr) (n 0.00 0.00	(1:X) 200.2 201.8 205.2 199.9 199.9 199.9 4.99 4.39 4.50 4.54 4.93	Tot <u>Netv</u> a I.Area b I.Area b 0.111 b 0.111 c 0.111 	Area Cor al Pipe vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 4.00 8 4.00 <u>Network</u> Σ I.Area (ha) 0.118 0.236 0.354	itributing (Volume (m³) sign Table Base Flow (l/s) 0.0	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.0000 0.0000 0.0000 0.000000	213 <u>SW3</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 225 225 Flow s) 0.0 0.0 0.0 0.0 0.0	Imp Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ Pipe/ Nipe/ Nipe/ <td>ermeable ion Type /Condui</td> <td>e Area</td>	ermeable ion Type /Condui	e Area
1.000 1.001 1.002 1.003 2.000 PI 1.0 1.0 1.0 1.0	(m) 33.815 9.484 2.872 34.190 27.387 N Ra (mm/ 000 50 001 50 002 50 003 50	(m) 0.169 0.047 0.014 0.137 in T /hr) (n 0.00 0.00 0.00 0.00	(1:X) 200.2 201.8 205.2 199.9 199.9 199.9 4.99 4.39 4.50 4.54 4.93	Tot <u>Netv</u> e I.Area (ha) 1 0.111 3 0.111 0 0.111 0 0.111 0 0.111 0 0.111 0 0.111 5 0.111 1 0.111 1 0.111 1 0.111 1 0.111 1 0.111 1 0.111 1 0.111 1 0.111 1 0.111 5 0.201 5 0	Area Cor al Pipe vork Des a T.E. (mins) 8 4.00 8 0.00 8 0.00 8 0.00 8 4.00 8 4.00 Network Σ I.Area (ha) 0.118 0.236 0.354 0.472	itributing (Volume (m³) sign Table Base Flow (l/s) 0.0	ha) = = 40.9 <u>e for</u> k (mm) 0.600 0.0000 0.0000 0.0000 0.000000	213 <u>SW3</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 450 450 450 225 225 Flow s) 0.0 0.0 0.0 0.0 0.0	Imp Secti Pipe/ Pipe/ Pipe/ Pipe/ Nipe/ Pipe/ Name Name 1.43 1.43 1.43 1.43	ermeable ion Type /Condui	e Area

DBFL Consulting Engineers	Page 2	
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B2	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	·

Network Design Table for SW3

PN Le	ength (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.006 7	5.239 7.377 9.672	0.026 0.037 0.348	201.5 199.4 200.2	0.118 0.118 0.118 0.118 0.118	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600		450 450 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	8 8 8

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.004 1.005 1.006 1.007 1.008	50.00 50.00 50.00 50.00 50.00	5.24 5.32 6.13	57.096 56.992 56.966 56.929 56.581	0.708 0.826 0.944 1.062 1.180	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	1.43 1.44 1.43	228.5 227.2 228.4 227.9 228.0	111.9 127.8 143.8

DBFL Consulting Engineers	Page 3	
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B2	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

<u>Manhole</u>	Schedules	for	SW3	

MH Name	MH CL (m)	MH Depth (m)	Conr	MH	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
SC9	59.300	1.803	Open	Manhole	1200	1.000	57.497	450				
SC8	59.300	1.972	Open	Manhole	1200	1.001	57.328	450	1.000	57.328	450	
SC7	59.400	2.119	Open	Manhole	1200	1.002	57.281	450	1.001	57.281	450	
SC6	59.500	2.233	Open	Manhole	1200	1.003	57.267	450	1.002	57.267	450	
SC5-1	59.969	2.736	Open	Manhole	1200	2.000	57.233	225				
SC5	59.870	2.774	Open	Manhole	1200	1.004	57.096	450	1.003	57.096	450	
									2.000	57.096	225	
SC4	59.665	2.673	Open	Manhole	1200	1.005	56.992	450	1.004	56.992	450	
SC3	59.614	2.648	Open	Manhole	1200	1.006	56.966	450	1.005	56.966	450	
SC2	59.520	2.591	Open	Manhole	1200	1.007	56.929	450	1.006	56.929	450	
SC1	59.472	2.891	Open	Manhole	1200	1.008	56.581	450	1.007	56.581	450	
SC0	59.594	3.348	Open	Manhole	0		OUTFALL		1.008	56.246	450	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SC9	704312.771	732825.135	704312.771	732825.135	Required	
SC8	704286.508	732803.835	704286.508	732803.835	Required	- Cont
SC7	704278.760	732798.366	704278.760	732798.366	Required	×
SC6	704279.995	732795.773	704279.995	732795.773	Required	<u>\</u>
SC5-1	704315.283	732821.726	704315.283	732821.726	Required	÷
SC5	704314.156	732794.362	704314.156	732794.362	Required	
SC4	704313.299	732773.661	704313.299	732773.661	Required	
SC3	704315.105	732768.743	704315.105	732768.743	Required	N.

DBFL Co	nsulti	ng Engine	ers				Page 4
Ormond 1		,	-	Kishoge			
Upper O:		Ouav		Site 3			
Dublin '				SW Catchme			
					— Micro		
Date 25					y Darren Ri		[°] Drainage
		tishoge_Si	te3_Dr		Dieter Bes	ter	
Innovyze	9			Network 20	20.1.3		
			Manhole	e Schedules	for SW3		
	MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)		Layout (North)
	SC2	704321.683	732765.402	704321.683	732765.402	Required	×
	SC1	704391.288	732762.348	704391.288	732762.348	Required	
	SC0	704394.352	732829.307			No Entry	
							Ť
			©198	32-2020 Inn	ovyze		

DBFL Consulting Engineers					
Ormond House	Kishoge				
Upper Ormond Quay	Site 3				
Dublin 7, Ireland	SW Catchment B2	Micro			
Date 25/02/2025	Designed by Darren Richardson	Drainage			
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage			
Innovyze	Network 2020.1.3				

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	450	SC9	59.300	57.497	1.353	Open Manhole	1200
1.001	0	450	SC8	59.300	57.328	1.522	Open Manhole	1200
1.002	0	450	SC7	59.400	57.281	1.669	Open Manhole	1200
1.003	0	450	SC6	59.500	57.267	1.783	Open Manhole	1200
2.000	0	225	SC5-1	59.969	57.233	2.511	Open Manhole	1200
1.004	0	450	SC5	59.870	57.096	2.324	Open Manhole	1200
1.005	0	450	SC4	59.665	56.992	2.223	Open Manhole	1200
1.006	0	450	SC3	59.614	56.966	2.198	Open Manhole	1200
1.007	0	450	SC2	59.520	56.929	2.141	Open Manhole	1200
1.008	0	450	SC1	59.472	56.581	2.441	Open Manhole	1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	33.815	200.1	SC8	59.300	57.328	1.522	Open Manhole	1200
1.001	9.484	201.8	SC7	59.400	57.281	1.669	Open Manhole	1200
1.002	2.872	205.1	SC6	59.500	57.267	1.783	Open Manhole	1200
1.003	34.190	199.9	SC5	59.870	57.096	2.324	Open Manhole	1200
2.000	27.387	199.9	SC5	59.870	57.096	2.549	Open Manhole	1200
1.004	20.719	199.2	SC4	59.665	56.992	2.223	Open Manhole	1200
1.005	5.239	201.5	SC3	59.614	56.966	2.198	Open Manhole	1200
1.006	7.377	199.4	SC2	59.520	56.929	2.141	Open Manhole	1200
1.007	69.672	200.2	SC1	59.472	56.581	2.441	Open Manhole	1200
1.008	67.029	200.1	SC0	59.594	56.246	2.898	Open Manhole	0

DBFL Consulting Engineers		Page 6
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B2	
Date 25/02/2025	Designed by Darren Richardson	— Micro
		Drainage
File 250127_Kishoge_Site3_Dr		
Innovyze	Network 2020.1.3	
Are	a Summary for SW3	
Pipe PIMP PIMP F	PIMP Gross Imp. Pipe Total	
Number Type Name	(%) Area (ha) Area (ha) (ha)	
1.000	100 0.118 0.118 0.118	
1.000	100 0.118 0.118 0.118	
1.002		
1.002		
	100 0.118 0.118 0.118	
1.004		
1.005		
1.006	100 0.118 0.118 0.118	
1.007	100 0.118 0.118 0.118	
1.008	100 0.118 0.118 0.118	
	Total Total Total	
	1.180 1.180 1.180	
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm)	
1.008 SC0	(m) 59.594 56.246 0.000 0 0	
T:000 DC0		
Simulat		
	tion Criteria for SW3	
Simulat Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s)	tion Criteria for SW3 0.750 Additional Flow - % of Total 1.000 MADD Factor * 10m³/ha Sto 0 Inlet Coeffice 0 Flow per Person per Day (1/per/ 0.500 Run Time (m	prage 2.000 cient 0.800 (day) 0.000 nins) 60
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrog Number of Online Con	tion Criteria for SW3 0.750 Additional Flow - % of Total 1.000 MADD Factor * 10m³/ha Sto 0 Inlet Coeffice 0 Flow per Person per Day (1/per/ 0.500 Run Time (m	orage 2.000 cient 0.800 (day) 0.000 nins) 60 nins) 1 0 0
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s) Number of Input Hydrog Number of Online Con Number of Offline Con	tion Criteria for SW3 0.750 Additional Flow - % of Total 1.000 MADD Factor * 10m ³ /ha Sto 0 Inlet Coeffied 0 Flow per Person per Day (1/per/ 0.500 Run Time (m 0.000 Output Interval (m graphs 0 Number of Storage Structures 0 htrols 0 Number of Time/Area Diagrams 0	orage 2.000 cient 0.800 (day) 0.000 nins) 60 nins) 1 0 0
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrog Number of Online Con Number of Offline Con	<pre>tion Criteria for SW3 0.750 Additional Flow - % of Total 1.000 MADD Factor * 10m³/ha Sto 0 Inlet Coeffice 0 Flow per Person per Day (1/per/ 0.500 Run Time (m 0.000 Output Interval (m 0.000 Output Interval (m 0.000 Flow per of Storage Structures for the second sec</pre>	orage 2.000 cient 0.800 (day) 0.000 nins) 60 nins) 1 0 0 0
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrog Number of Online Con Number of Offline Con <u>Synthe</u> Rainfall Model Return Period (years)	tion Criteria for SW3 0.750 Additional Flow - % of Total 1.000 MADD Factor * 10m ³ /ha Sto 0 Inlet Coeffice 0 Flow per Person per Day (1/per/ 0.500 Run Time (m 0.000 Output Interval (m graphs 0 Number of Storage Structures trols 0 Number of Time/Area Diagrams trols 0 Number of Real Time Controls	Summer 0.750 0.840
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrog Number of Online Con Number of Offline Con Synthe Rainfall Model Return Period (years) Region Scotl. M5-60 (mm)	tion Criteria for SW3 0.750 Additional Flow - % of Total 1.000 MADD Factor * 10m ³ /ha Sto 0 Inlet Coeffice 0 Flow per Person per Day (1/per/ 0.500 Run Time (m 0.000 Output Interval (m graphs 0 Number of Storage Structures of htrols 0 Number of Time/Area Diagrams of htrols 0 Number of Real Time Controls of tic Rainfall Details FSR Profile Type 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	Summer 0.750 0.840

OBFL Consult	crud nudruce	rs				L a	ge 7
Ormond House			Kishoge				
Jpper Ormono	d Ouav		Site 3			1	
Dublin 7, In				hment B2			licco
Date 25/02/2					ren Richardso	\sim	icro
	Kishoge Sit	-3 Dr		-	er Bester		rainage
	_KISHOGE_SIC			2020.1.			
Innovyze			Network	2020.1.	5		
Manhole	Areal Reducti Hot Sta Hot Start L Headloss Coeff ewage per hect Number of Inp Number of Of Number of Of Rainfall 1 R M5-60	5 on Factor rt (mins) evel (mm) (Global) are (1/s) out Hydroo online Con filine Con filine Con Synt Model egion Sco (mm) lood Risk	Simulation C 5 1.000 Ac 0 0.500 Flow 0.000 graphs 0 Num ntrols 0 Num ntrols 0 Num hetic Rainfo otland and I c Warning (m	Criteria dditional MADD Fa w per Perse mber of St mber of Ti mber of Re all Detail FSR creland Cv 16.700 Cv m) 300.0	Ratio R 0.275 (Summer) 0.750 (Winter) 0.840 DVD Status	al Flow (Storage 2 iecient (er/day) (es 0 ns 0 ls 0	0.000 2.000 0.800
			DTS Stat	-	Inertia Status	OFF	
Ret	Pro: Duration(s) urn Period(s) <mark>Climate Char</mark>	File(s) (mins) (years)	DTS Stat	us ON 60, 120, 1	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1,	nd Winter 180, 600, 20, 5760,	
Ret	<pre>Duration(s) urn Period(s)</pre>	File(s) (mins) (years)	DTS Stat	us ON 60, 120, 1 60, 1440,	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20	d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20	+20% mod climate cha
	Duration(s) urn Period(s) <mark>Climate Char</mark>	File(s) (mins) (years)	DTS Stat	us ON 60, 120, 1 60, 1440, Wa	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 ter Surcharged	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 </pre>	+20% mod climate cha
Retr US/M PN Name	Duration(s) urn Period(s) Climate Char H	File(s) (mins) (years)	DTS Stat	us ON 60, 120, 1 60, 1440, Wa US/CL L	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20	d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20	+20% mod climate cha
US/M PN Name	Duration(s) urn Period(s) Climate Char H	<pre>File(s) (mins) (years) nge (%) Event</pre>	DTS Stat	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 ter Surcharged evel Depth (m) (m)	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 0, 20, 20 0 Flooded Volume (m³)</pre>	Flow / Cap.
US/M PN Name 1.000 SC	Duration(s) urn Period(s) Climate Char H 9 15 minute 10	File(s) (mins) (years) nge (%) Event D year Wi	DTS Stat	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (59.300 58	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Surcharged evel Depth (m) (m) .851 0.904	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000</pre>	<pre>+20% mod climate cha Flow / Cap. 0.17</pre>
US/M PN Name 1.000 SC 1.001 SC	Duration(s) urn Period(s) Climate Char H	File(s) (mins) (years) nge (%) Event D year Wi D year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20%	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (59.300 58 59.300 58	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Surcharged evel Depth (m) (m) .851 0.904 .817 1.039	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.000</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43
US/M PN Name 1.000 SC 1.001 SC 1.002 SC	Duration(s) urn Period(s) Climate Char H 9 15 minute 10 8 15 minute 10	File(s) (mins) (years) nge (%) Event O year Wi O year Wi O year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .nter I+20%	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (59.300 58 59.300 58 59.400 58	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Surcharged evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.000 0.000</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5-	Duration(s) urn Period(s) Climate Char H 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 15 minute 10	File(s) (mins) (years) nge (%) Event O year Wi O year Wi O year Wi O year Wi O year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20%	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (59.300 58 59.300 58 59.400 58 59.400 58 59.500 58	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 15 minute 10 5 15 minute 10	File(s) (mins) (years) nge (%) Event O year Wi O year Wi O year Wi O year Wi O year Wi O year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20%	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (59.300 58 59.300 58 59.400 58 59.400 58 59.500 58 59.969 58 59.870 58	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC 1.005 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 15 minute 10 5 15 minute 10 4 15 minute 10	File(s) (mins) (years) nge (%) Event O year Wi O year Wi O year Wi O year Wi O year Wi O year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20%	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (59.300 58 59.300 58 59.300 58 59.400 58 59.500 58 59.500 58 59.969 58 59.870 58 59.870 58	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 ater Surcharged evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104 .532 1.090	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09 1.77
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC 1.005 SC 1.006 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 15 minute 10 5 15 minute 10 3 15 minute 10	File(s) (mins) (years) nge (%) Event O year Wi O year Wi O year Wi O year Wi O year Wi O year Wi O year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20%	 Us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (1) 59.300 58 59.400 58 59.400 58 59.500 58 59.605 58 59.665 58 59.614 58 	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 ater Surcharged evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104 .532 1.090 .368 0.952	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09 1.77 1.81
US/M PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC 1.005 SC 1.005 SC 1.006 SC 1.007 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 15 minute 10 5 15 minute 10 4 15 minute 10	File(s) (mins) (years) nge (%) D year Wi D year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20% .nter I+20%	 Us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (1) 59.300 59.300 59.400 59.500 59.500 59.969 59.870 59.665 58 59.665 58 59.520 58 	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 ater Surcharged evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104 .532 1.090 .368 0.952 .153 0.774	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.00</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09 1.77 1.81 1.37
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC 1.005 SC 1.006 SC 1.007 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 15 minute 10 5 15 minute 10 4 15 minute 10 3 15 minute 10 2 15 minute 10	File(s) (mins) (years) hge (%) Event D year Wi D year Wi US/MH Over	DTS Stat 15, 30, 9 720, 9 720, 9 15, 30, 9 720, 9 15, 30, 9 720, 9 15, 30,	us ON 60, 120, 1 60, 1440, Wa US/CL L (m) (59.300 58 59.300 58 59.300 58 59.400 58 59.400 58 59.500 58 59.500 58 59.665 58 59.665 58 59.614 58 59.614 58 59.614 58 59.520 58 59.472 57	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104 .532 1.090 .368 0.952 .153 0.774 .475 0.444	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.00</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09 1.77 1.81 1.37
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC 1.005 SC 1.006 SC 1.007 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 5 minute 10 3 15 minute 10 2 15 minute 10 1 5 minute 10 1 5 minute 10	File(s) (mins) (years) nge (%) Event O year Wi O year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .n	 ON 60, 120, 1 60, 1440, 60, 1440, Wa US/CL L (m) (59.300 58 59.300 58 59.400 58 59.400 58 59.665 58 59.665 58 59.614 58 59.614 58 59.614 58 59.472 57 Pipe mum Flow (m³) (1/s) 	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104 .532 1.090 .368 0.952 .153 0.774 .475 0.444	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.00</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09 1.77 1.81 1.37
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC 1.005 SC 1.006 SC 1.007 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 15 minute 10 3 15 minute 10 3 15 minute 10 1 15 minute 10	File(s) (mins) (years) nge (%) Event D year Wi D year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .n	 ON 60, 120, 1 60, 1440, 60, 1440, Wa US/CL L (m) (0) 59.300 58 59.300 58 59.300 58 59.400 58 59.400 58 59.665 58 59.665 58 59.614 58 59.614 58 59.614 58 59.614 58 59.472 57 Pipe mum Flow (m³) (1/s) .526 34.4 	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Depth (m) (m) .851 0.904 .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104 .532 1.090 .368 0.952 .153 0.774 .475 0.444	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.00</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09 1.77 1.81 1.37
US/MI PN Name 1.000 SC 1.001 SC 1.002 SC 1.003 SC 2.000 SC5- 1.004 SC 1.005 SC 1.006 SC 1.007 SC	Duration(s) urn Period(s) Climate Char 9 15 minute 10 8 15 minute 10 7 15 minute 10 6 15 minute 10 1 5 minute 10 3 15 minute 10 2 15 minute 10 1 5 minute 10 1 5 minute 10	File(s) (mins) (years) nge (%) Event O year Wi O year Wi	DTS Stat 15, 30, 9 720, 9 .nter I+20% .nter I+20% .n	 US ON 60, 120, 1 60, 1440, Wa US/CL L4 (m) (1) 59.300 59.300 59.300 59.300 59.300 59.400 58 59.605 58 59.665 58 59.614 58 59.614 58 59.472 57 Pipe mum Flow (m³) (1/s) .526 34.4 .866 67.6 	Summer ar 80, 240, 360, 4 2160, 2880, 432 7200, 864 1, 20 evel Depth (m) (m) .851 0.904 .817 1.039 .767 1.036 .756 1.039 .775 1.317 .650 1.104 .532 1.090 .368 0.952 .153 0.774 .475 0.444	<pre>d Winter 180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 4 Flooded Volume (m³) 0.000 0.00</pre>	+20% mod climate cha Flow / Cap. 0.17 0.43 0.82 0.64 1.07 1.09 1.77 1.81 1.37

DBFL Consulting Engineers		Page 8
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B2	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamaye
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for SW3

PN	US/MH Name	 Maximum Vol (m³)	Pipe Flow (l/s)	Status
2.000	SC5-1	1.739	36.5	SURCHARGED
1.004	SC5	8.040	197.9	SURCHARGED
1.005	SC4	4.840	231.3	SURCHARGED
1.006	SC3	2.223	264.0	SURCHARGED
1.007	SC2	2.361	291.5	SURCHARGED
1.008	SC1	11.896	313.4	SURCHARGED

DBFL Consulting Engineers		Dago 1
Ormond House	Vichogo	Page 1
	Kishoge	
Upper Ormond Quay	Site 3 SW Catchment B3	
Dublin 7, Ireland		Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	brainage
Innovyze	Network 2020.1.3	
	by the Modified Rational Method	
Pipe Sizes STA	ANDARD Manhole Sizes STANDARD	
FSR Rainfall	Model - Scotland and Ireland	
Return Period (years)		IMP (%) 100
M5-60 (mm)	16.700 Add Flow / Climate Char	
	8 0.275 Minimum Backdrop Heig	
Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins)	50 Maximum Backdrop Heig 30 Min Design Depth for Optimisati	
Foul Sewage (l/s/ha)		
Volumetric Runoff Coeff.		•
Design	ned with Level Soffits	
Time A	rea Diagram for SW4	
Time	Area Time Area	
(mins) (ha) (mins) (ha)	
0-	4 0.441 4-8 0.096	
		atchment B3 -
Total Area	$Contributing (b_2) = 0.537$	
	Impern	neable Area
Total P	ipe Volume (m ³) = 4.827	neable Area
Total P.	Impen	neable Area
	Impen	neable Area
<u>Network</u> PN Length Fall Slope I.Area T.	ipe Volume (m ³) = 4.827 Design Table for SW4	
<u>Network</u> PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4	<pre>ipe Volume (m³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 o 300 Pipe/Co</pre>	Type Auto Design
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4	ipe Volume (m ³) = 4.827 <u>Design Table for SW4</u> E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm)	Type Auto Design nduit 6
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0	<pre>ipe Volume (m³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 o 300 Pipe/Co</pre>	Type Auto Design
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0	<pre>ipe Volume (m³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 o 300 Pipe/Co 0.00 0.0 0.600 o 300 Pipe/Co cork Results Table Area E Base Foul Add Flow Vel Co </pre>	Type Auto Design
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit e Induit e Cap Flow
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha) 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (1/s) (mm) SECT (mm) 4.00 0.0 0.600 o 300 Pipe/Co 0.00 0.0 0.600 o 300 Pipe/Co 0.00 0.0 0.600 o 300 Pipe/Co tork Results Table Area E Base Foul Add Flow Vel C a) Flow (1/s) (1/s) (1/s) (m/s) (1 .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit i Induit i Cap Flow L/s) (1/s)
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit 0 Induit 0 Cap Flow L/s) (1/s) 78.4 36.4
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit 0 Induit 0 Cap Flow L/s) (1/s) 78.4 36.4
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit 0 Induit 0 Cap Flow L/s) (1/s) 78.4 36.4
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit 0 Induit 0 Cap Flow L/s) (1/s) 78.4 36.4
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit 0 Induit 0 Cap Flow L/s) (1/s) 78.4 36.4
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit 0 Induit 0 Cap Flow L/s) (1/s) 78.4 36.4
Network PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E I.A 2.000 50.00 4.63 56.946 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit 0 Induit 0 Cap Flow L/s) (1/s) 78.4 36.4
N Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 2.000 41.731 0.209 199.7 0.269 4 2.001 26.556 0.133 199.7 0.268 0 Netw PN Rain T.C. US/IL E 1.2 (mm/hr) (mins) (m) (ha) 2.000 50.00 4.63 56.946 0 2.001 50.00 5.03 56.737 0	ipe Volume (m ³) = 4.827 Design Table for SW4 E. Base k HYD DIA Section ins) Flow (l/s) (mm) SECT (mm) 4.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co 0.00 0.0 0.600 ο 300 Pipe/Co vork Results Table Area Σ Base Foul Add Flow Vel C a) Flow (l/s) (l/s) (l/s) (m/s) (l .269 0.0 0.0 0.0 1.11 7	Type Auto Design Induit i Induit i Cap Flow L/s) (1/s) 78.4 36.4

DBFL	Consu	lting	Engi	neers									P	age	2]	
	nd Hou						shoge										
Uppe	r Ormc	ond Qu	lay			Si	te 3								_		
Dubl	in 7,	Irela	Ind			SW	Catch	nment	В3				N	Nic	rn i		
Date	25/02	2025	,			De	signed	d by i	Darr	en R	icha	ardson	n	lcai	inage		
File	25012	27_Kis	hoge_	Site3_	Dr	Ch	ecked	by D	iete	r Bea	stei	r		וסונ	inage		
Inno	vyze					Ne	twork	2020	.1.3								
				<u>N</u>	lanhol	Le So	chedul	es fo	or SI	W4							
MH Name	MH CL (m)	MH Depth (m)		MH Action	MF Diam. (mm	,L*W	PN	Pipe Inve Level	ert	Diame (mm		PN	Pipes Inve Level	rt	Diamete (mm)	r Backdr (mm)	-
SD2	59.018	2.072	Open M	Manhole		1200	2.000	56	.946		300						
	59.286		_				2.001		.737		300	2.000	56	.737	30	0	
	59.536		_	Manhole		0		OUT	FALL			2.001	56	.604	30	0	
			anhole asting	Nort	hole hing		ersection		North	ing		nhole	Layout (North				
			(m)	(m)		(m)		(m)								
	5	SD2 70	4523.96	50 73304	10.206	70	4523.9	60 7	73304	0.206	Req	uired	-				
		SD1 70	4485.40	6 73302	24.235	70	4485.4	06 7	73302	4.235	Req	uired	1	•			
	S	SD0 70	4465.27	3 73300)6.918						No	Entry		•			
					©19	982-2	2020 I	nnovy	yze								

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B3	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

<u>Upstream Manhole</u>

PN	-	Diam (mm)	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
2.000 2.001				56.946 56.737		Open Manhole Open Manhole	1200 1200

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
2.000	41.731	199.7	SD1	59.286	56.737	2.249	Open Manhole	1200
2.001	26.556	199.7	SD0	59.536	56.604	2.632	Open Manhole	0

Ormond House		Page 4
	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B3	Micro
Date 25/02/2025	Designed by Darren Richardson	
File 250127 Kishoge Site3 Dr		Drainag
 Innovyze	Network 2020.1.3	
	a Summary for SW4	
Pipe PIMP PIMP I Number Type Name	PIMP Gross Imp. Pipe Total (%) Area (ha) Area (ha) (ha)	
	100 0.269 0.269 0.269 100 0.268 0.268 0.268	
2.001		
	Total Total Total 0.537 0.537 0.537	
<u>Free</u> Flowin	g Outfall Details for SW4	
Outfall Outfall	C. Level I. Level Min D,L W	
Pipe Number Name	(m) (m) I. Level (mm) (mm)	
	(m)	
2.001 SD0	59.536 56.604 0.000 0 0	
Simulat	tion Criteria for SW4	
Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s)	0 Flow per Person per Day (l/per/d 0.500 Run Time (mi	ay) 0.000 ns) 60
Number of Online Con	graphs 0 Number of Storage Structures 0 ntrols 0 Number of Time/Area Diagrams 0 ntrols 0 Number of Real Time Controls 0	
Sunthe		
Synthe	tic Rainfall Details	
Rainfall Model	FSR Profile Type S	
Rainfall Model Return Period (years)	FSR Profile Type S 100 Cv (Summer)	0.750
Rainfall Model Return Period (years) Region Scotl	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter)	0.750 0.840
Rainfall Model Return Period (years)	FSR Profile Type S 100 Cv (Summer)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840
Rainfall Model Return Period (years) Region Scotl M5-60 (mm)	FSR Profile Type S 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins)	0.750 0.840

rmond Ho oper Orm		ers		Page 5
oper Orm	ouse		Kishoge	
-	nond Quay		Site 3	
ublin 7,	Ireland		SW Catchment B3	Micro
ate 25/0)2/2025		Designed by Darren Richa	Drainage
le 2501	L27_Kishoge_Si	te3_Dr		
novyze			Network 2020.1.3	
	Hot St Hot Start De Headloss Coef al Sewage per heo Number of I Number of Number of Rainfall M5-6	cion Facto cart (mins Level (mm ff (Global ctare (1/s nput Hydro Online Co Offline Co Offline Co Synt L Model Region Sc 50 (mm) Flood Ris) 0.500 Flow per Person per Day	<pre>3/ha Storage 2.000 Coefficient 0.800 (1/per/day) 0.000 Actures 0 agrams 0 ntrols 0 0.275 0.750 0.840 atus ON</pre>
	Duration(s	(years)	15, 30, 60, 120, 180, 240, 3 720, 960, 1440, 2160, 2880	, 4320, 5760, , 8640, 10080 1, 30, 100 20, 20, 20 ← +20% n
	Duration(s	<pre>(mins) (years)</pre>	15, 30, 60, 120, 180, 240, 3 720, 960, 1440, 2160, 2880	60, 480, 600, , 4320, 5760, , 8640, 10080
US PN Na 2.000	Duration(s Return Period(s) Climate Ch	(years) (years) hange (%) eturn Clim eriod Char 100 +	15, 30, 60, 120, 180, 240, 3 720, 960, 1440, 2160, 2880 7200 ate First (X) First (Y) Firs	60, 480, 600, , 4320, 5760, , 8640, 10080 1, 30, 100 20, 20, 20 +20% n climate Water
US PN Na 2.000 2.001	Duration(s Return Period(s) Climate Ch /MH Re ame Storm Pe SD2 15 Winter	(years) ange (%) eturn Clim eriod Char 100 + 100 + Flooded Volume F	15, 30, 60, 120, 180, 240, 3 720, 960, 1440, 2160, 2880 7200 ate First (X) First (Y) Firs age Surcharge Flood Over 20% 30/15 Summer	60, 480, 600, , 4320, 5760, , 8640, 10080 1, 30, 100 20, 20, 20 +20% n climate Water t (Z) Overflow Level cflow Act. (m) 58.348 57.954 Level
US PN Na 2.000 2.001	Duration(s Return Period(s) Climate Ch /MH Re ame Storm Pe SD2 15 Winter SD1 15 Winter SUrcharged S/MH Depth	(years) ange (%) eturn Clim eriod Char 100 + 100 + Flooded Volume F	15, 30, 60, 120, 180, 240, 3 720, 960, 1440, 2160, 2880 7200 ate First (X) First (Y) Firs age Surcharge Flood Over 20% 30/15 Summer 20% 30/15 Summer Half Drain Pipe low / Overflow Time Flow Cap. (1/s) (mins) (1/s) 1.34 97.9	60, 480, 600, , 4320, 5760, , 8640, 10080 1, 30, 100 20, 20, 20 +20% n climate Water t (Z) Overflow Level cflow Act. (m) 58.348 57.954 Level

DDEL Conquiting Engineers		Daga 1								
DBFL Consulting Engineers Ormond House	V all a sec	Page 1								
	Kishoge									
Upper Ormond Quay	Site 3									
Dublin 7, Ireland	SW Catchment B4	Micro								
Date 25/02/2025	Designed by Darren Richardson	Drainage								
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Brainage								
Innovyze	Network 2020.1.3									
STORM SEWER DESIGN by the Modified Rational Method										
<u>Design Criteria for SW5</u>										
Pipe Sizes STA	NDARD Manhole Sizes STANDARD									
FSR Rainfall Model - Scotland and IrelandReturn Period (years)100PIMP (%)100M5-60 (mm)16.700Add Flow / Climate Change (%)0Ratio R0.275Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m)1.500Maximum Time of Concentration (mins)30Min Design Depth for Optimisation (m)1.200Foul Sewage (1/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)500										
Time A	rea Diagram for SW5									
Time (mins)	Area Time Area (ha) (mins) (ha)									
0-4	4 0.824 4-8 0.074									
SW/ Cotobmont P4										
Total Area Contributing (ha) = 0.898 SW Catchment B4 - Impermeable Area										
	Contributing (ha) = 0.898									
Total Pi	Contributing (ha) = 0.898									
Total Pi <u>Network</u>	pe Volume (m ³) = 1.553									
Total Pi <u>Network</u> « - Indica	Design Table for SW5 ates pipe capacity < flow	meable Area								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T .	Design Table for SW5 ates pipe capacity < flow	meable Area								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min	Contributing (ha) = 0.898 Impendential ImpendentiaImpendentImpendentImpendential Impendential Impendential Impenden	Type Auto Design								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 21.970 0.110 199.7 0.898 4	Contributing (ha) = 0.898 Imperiod Imperiod Imperiod <tr< td=""><td>Type Auto Design</td></tr<>	Type Auto Design								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 21.970 0.110 199.7 0.898 4	Contributing (ha) = 0.898 Impendential ImpendentiaImpendentImpendentImpendential Impendential Impendential Impenden	Type Auto Design								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.2	Contributing (ha) = 0.898 Imperiod Ipe Volume (m³) = 1.553 Design Table for SW5 ates pipe capacity < flow	Type Auto Design nduit 🔒								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.2	Contributing (ha) = 0.898 Imperiod Inperoversion Imperiod Inperoversion Imperiod Inperoversion Imperiod Inperoversion Imperiod Inperoversion Imperiod Inperoversion Imperoversion Imperoversion Imperoversion Imperiod Imperoversion Imperoversion Impero	Type Auto Design nduit ap Flow /s) (1/s)								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								
Total Pi <u>Network</u> « - Indica PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min 1.000 21.970 0.110 199.7 0.898 4 <u>Netwo</u> PN Rain T.C. US/IL E I.A (mm/hr) (mins) (m) (ha	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								
Network « - Indica PN Length Fall Slope I.Area T.: (m) (m) (1:X) 1.000 21.970 0.110 199.7 0.898 4 Network Network PN Rain T.C. US/IL Σ I.Area 1.000 50.00 4.33 57.500 0.	Contributing (ha) = 0.898 Imperiod Inperoval Imperiod Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Inperval Imperval Imperval Imperval <	Type Auto Design nduit ap Flow /s) (1/s)								

DBFL	Consu	lting	Engine	ers								Pa	age	2	
	nd Hou					Kis	shoge								
Uppe	r Ormc	ond Qu	av				te 3								
	in 7,							nment B4				N	lic		
	25/02							d by Dar		icha	rdsoi		lici	U	
			hoge Si	te3	Dr			by Diet					Iral	nage	
	vyze							2020.1.							
	vyze					110	CWOIN	2020.1.	<u> </u>						
				<u>M</u>	lanhol	<u>e Sc</u>	chedul	es for	<u>SW5</u>						
MH Name	MH CL (m)	MH Depth (m)	MH Connect	tion	MH Diam. (mn	,L*W	PN	Pipe Out Invert Level (m)	Diame		PN	Pipes Inve: Level	rt	Diamete (mm)	Backdrop (mm)
			Open Mar Open Mar			1200 0	1.000	57.50 OUTFAL		300	1.000	57.	390	30(
			anhole asting (m)	Nort	hole hing m)		rsectio Asting (m)		ection hing n)		nole ess	Layout (North)			
	2	SE1 704	4382.189	73289	0.011	70	4382.1	89 7328	90.011	Requ	ired	1			
	S	SEO 704	4394.915	73290)7.919					No E	ntry				
					@1.0			nnovyze							

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B4	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	·

<u>Upstream Manhole</u>

PN	-	Diam (mm)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	300	SE1	59.155	57.500	1.355	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., (mm)	L*W
1.000	21.970	199.7	SE0	59.124	57.390	1.434	Open Manhole		0

rmond House		Page 4
	Kishoge	
Ipper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B4	Micro
ate 25/02/2025	Designed by Darren Richardson	
ile 250127 Kishoge Site3 Dr	. Checked by Dieter Bester	Drainag
innovyze	Network 2020.1.3	
Pipe PIMP PIMP 1	ea Summary for SW5 PIMP Gross Imp. Pipe Total (%) Area (ha) Area (ha) (ha)	
1.000	100 0.898 0.898 0.898 Total Total Total Total 0.898 0.898 0.898 0.898	
<u>Free</u> Flowin	ng Outfall Details for SW5	
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
1.000 SE0	59.124 57.390 0.000 0 0	
	0 Flow per Person per Day (l/per/da	
Number of Online Cor Number of Offline Cor	0.000 Output Interval (min graphs 0 Number of Storage Structures 0 ntrols 0 Number of Time/Area Diagrams 0 ntrols 0 Number of Real Time Controls 0	
Foul Sewage per hectare (l/s) Number of Input Hydrog Number of Online Cor Number of Offline Cor	0.000 Output Interval (min graphs 0 Number of Storage Structures 0 ntrols 0 Number of Time/Area Diagrams 0	
Foul Sewage per hectare (1/s) Number of Input Hydrog Number of Online Cor Number of Offline Cor <u>Synthe</u> Rainfall Model Return Period (years)	0.000 Output Interval (min graphs 0 Number of Storage Structures 0 ntrols 0 Number of Time/Area Diagrams 0 ntrols 0 Number of Real Time Controls 0	ummer 0.750 0.840

	nsulting		0010							Pa	ige 1
)rmond H	House				shoge						
	rmond Qua	-			te 3						
	7, Irelar	nd			Catchmen					N	licro
,	/02/2025				signed by				dson		raina
	0127_Kisł	noge_Si	ite3_Dr		ecked by		r Best	ler			Activities
Innovyze	9			Ne	twork 202	0.1.3					
	STO	ORM SEV	VER DESI	IGN by	the Modif	ied Ra	ationa	al M	etho	<u>d</u>	
			De	<u>sign C</u> :	riteria fo	or SW6	<u>5</u>				
		Pi	lpe Sizes	STANDA	RD Manhole	Sizes	STANDA	RD			
Maximum	Maxim Time of C F	turn Pe um Rain oncentr oul Sew	riod (yea M5-60 Rat: fall (mm, ation (m:	ars) (mm) 16. io R 0. /hr) ins) /ha) 0.	275 50 30 Min Des 000 Min	Add F Min Max sign De	flow / nimum B simum B epth fo or Auto	Clim ackd ackd or Op Des	rop H rop H timis ign o	eight eight ation nly (m	(%) (m) 0.2 (m) 1.5 (m) 1.2 /s) 1.
			De	signed w	with Level S	Soffits	5				
			<u>Tim</u>	e Area	Diagram :	for SW	16				
			-	-	rea Time						
			(1	ains) (I	ha) (mins)	(na)					
				0-4 0.	823 4-8	0.176					
			Total A	Area Con	tributing (ha) = (0.999 ┥				ment B5 -
					,						
									lim	ipermear	ole Area
			Tota	l Pipe V	/olume (m³)	= 26.3			lim	ipermear	ole Area
					Volume (m³) sign Table		326				ole Area
PN I	ength Fal	-	<u>Netwo</u> e I.Area	ork Des T.E.	ign Table Base	for s	326 <u>SW6</u> HYD			ion Tyr	be Auto
PN I	ength Fal (m) (m	_	<u>Netwo</u> e I.Area	ork Des T.E.	ign Table	for	326 <u>SW6</u> HYD	DIA (mm)			
1.000 5	(m) (m)) (1:X) 46 206.	<u>Netwo</u> e I.Area) (ha) 7 0.200	Dork Des T.E. (mins) 4.00	Base Flow (1/s)	for ; k (mm) 0.600	326 <u>SW6</u> HYD SECT 0	(mm) 450	Sect: Pipe/	ion Typ /Condui	pe Auto Desig
1.000 5 1.001 7	(m) (m 50.849 0.2 76.722 0.3) (1:X 46 206. 83 200.	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200	T.E. (mins) 4.00 0.00	Base Flow (1/s) 0.0 0.0	for : k (mm) 0.600 0.600	326 <u>SW6</u> HYD SECT 0 0	(mm) 450 450	Secti Pipe/ Pipe/	ion Typ /Condui /Condui	pe Auto Desig
1.000 5 1.001 7 1.002 1	(m) (m)) (1:X) 46 206. 83 200. 83 73.	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200	Dork Des T.E. (mins) 4.00	Base Flow (1/s) 0.0 0.0 0.0	for ; k (mm) 0.600	326 <u>SW6</u> HYD SECT 0	(mm) 450 450 450	Secti Pipe/ Pipe/ Pipe/	ion Typ /Condui	De Auto Desig it e it e
1.000 5 1.001 7 1.002 1 1.003 1	(m) (m 50.849 0.29 76.722 0.39 3.518 0.19) (1:X) 46 206. 83 200. 83 73. 81 100.	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200	T.E. (mins) 4.00 0.00 0.00	Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0	for : k (mm) 0.600 0.600 0.600	326 <u>SW6</u> HYD SECT 0 0 0	(mm) 450 450 450 450	Secti Pipe/ Pipe/ Pipe/ Pipe/	ion Typ /Condui /Condui /Condui	De Auto Desig it e it e it e
1.000 5 1.001 7 1.002 1 1.003 1	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1) (1:X) 46 206. 83 200. 83 73. 81 100.	Netwo e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199	T.E. (mins) 4.00 0.00 0.00 0.00 0.00	Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0	k (mm) 0.600 0.600 0.600 0.600 0.600 0.600	326 <u>SW6</u> HYD SECT 0 0 0 0 0	(mm) 450 450 450 450	Secti Pipe/ Pipe/ Pipe/ Pipe/	ion Typ /Condui /Condui /Condui /Condui	De Auto Desig it e it e it e
1.000 5 1.001 7 1.002 1 1.003 1	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0 Rain	<pre>) (1:x, 46 206. 83 200. 83 73. 81 100. 63 100.</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>Ν</u> US/IL Σ	T.E. (mins) 4.00 0.00 0.00 0.00 0.00 0.00 etwork : I.Area	Eign Table Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 Results 1 Σ Base	<pre> for : k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Table Foul</pre>	226 <u>SW6</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 450 450 450 450 450	Secti Pipe/ Pipe/ Pipe/ Pipe/ Vel	ion Typ /Condui /Condui /Condui /Condui /Condui	De Auto Desig it it it it it Flow
1.000 5 1.001 7 1.002 1 1.003 1 1.004	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0	<pre>(1:x) 46 206. 83 200. 83 73. 81 100. 63 100.</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>N</u>	T.E. (mins) 4.00 0.00 0.00 0.00 0.00 0.00 0.00	Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 Results 1	<pre> for : k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Table Foul</pre>	326 <u>SW6</u> HYD SECT 0 0 0 0 0 0	(mm) 450 450 450 450 450	Secti Pipe, Pipe, Pipe, Pipe,	ion Typ /Condui /Condui /Condui /Condui /Condui	De Auto Desig it it it it it Flow
1.000 5 1.001 7 1.002 1 1.003 1 1.004 PN 1.004	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0 Rain (mm/hr) 0 50.00	<pre>) (1:x, 46 206. 83 200. 83 73. 81 100. 63 100. T.C. (mins) 4.60</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>Ν</u> US/IL Σ (m) 57.368	T.E. (mins) 4.00 0.00 0.00 0.00 0.00 0.00 etwork : I.Area (ha) 0.200	bign Table Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 Results 2 Σ Base Flow (1/s) 0.0	<pre>k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Fable Foul (1/s) 0.0</pre>	226 <u>SW6</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 450 450 450 450 450 10w \$) 0.0	Secti Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.41	ion Typ /Condui /Condui /Condui /Condui /Condui /Condui 224.3	De Auto Designit it it it it it it flow (1/s) 27.1
1.000 5 1.001 7 1.002 1 1.003 1 1.004 PN 1.004	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0 Rain (mm/hr) 0 50.00 1 50.00	<pre>) (1:x, 46 206. 83 200. 83 73. 81 100. 63 100. T.C. (mins) 4.60 5.49</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>Ν</u> US/IL Σ (m) 57.368 57.122	T.E. (mins) 4.00 0.00 0.00 0.00 0.00 etwork 1.Area (ha) 0.200 0.400	bign Table Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 Results 2 Σ Base Flow (1/s) 0.0 0.0	<pre>k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Fable Foul (1/s) 0.0 0.0</pre>	226 <u>SW6</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 450 450 450 450 450 0.0 0.0 0.0	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ 1.41 1.43	ion Typ /Condui /Condui /Condui /Condui /Condui 224.3 227.9	Pe Auto Designed It O It O It O It O It O It O It O It O
1.000 5 1.001 7 1.002 1 1.003 1 1.004 PN 1.004	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0 Rain (mm/hr) 0 50.00 1 50.00 2 50.00	<pre>) (1:x) 46 206. 83 200. 83 73. 81 100. 63 100. T.C. (mins) 4.60 5.49 5.59</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>Ν</u> US/IL Σ (m) 57.368	T.E. (mins) 4.00 0.00 0.00 0.00 0.00 0.00 etwork : I.Area (ha) 0.200	bign Table Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 Results 2 Σ Base Flow (1/s) 0.0	<pre>k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Fable Foul (1/s) 0.0 0.0</pre>	226 <u>SW6</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 450 450 450 450 450 10w \$) 0.0	Secti Pipe, Pipe, Pipe, Pipe, Vel (m/s) 1.41 1.43 2.37	ion Typ /Condui /Condui /Condui /Condui /Condui 224.3 227.9 376.6	Pe Auto Designed It O It O It O It O It O It O It O It O
1.000 5 1.001 7 1.002 1 1.003 1 1.004 PN 1.004	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0 Rain (mm/hr) 0 50.00 1 50.00 2 50.00 3 50.00	<pre>) (1:x, 46 206. 83 200. 83 73. 81 100. 63 100.</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>Ν</u> US/IL Σ (m) 57.368 57.122 56.739	T.E. (mins) 4.00 0.00 0.00 0.00 0.00 0.00 etwork 1.Area (ha) 0.200 0.400 0.600	bign Table Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 Results 5 Σ Base Flow (1/s) 0.0 0.0 0.0	<pre>k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Iable Foul (1/s) 0.0 0.0 0.0</pre>	226 <u>SW6</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 450 450 450 450 450 0.0 0.0 0.0 0.0	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nel (m/s) 1.41 1.43 2.37 2.03	ion Typ /Condui /Condui /Condui /Condui /Condui 224.3 227.9 376.6 323.3	De Auto Designit it it it it it it flow (1/s) 27.1 54.2 81.2
1.000 5 1.001 7 1.002 1 1.003 1 1.004 PN 1.000 1.000 1.000	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0 Rain (mm/hr) 0 50.00 1 50.00 2 50.00 3 50.00	<pre>) (1:x, 46 206. 83 200. 83 73. 81 100. 63 100.</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>N</u> US/IL Σ (m) 57.368 57.122 56.739 56.557	T.E. (mins) 4.00 0.00 0.00 0.00 0.00 0.00 etwork : I.Area (ha) 0.200 0.400 0.600 0.800	bign Table Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 Results 5 E Base Flow (1/s) 0.0 0.0 0.0 0.0	<pre>k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Iable Foul (1/s) 0.0 0.0 0.0</pre>	226 <u>SW6</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 450 450 450 450 450 0.0 0.0 0.0 0.0 0.0 0.0	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nel (m/s) 1.41 1.43 2.37 2.03	ion Typ /Condui /Condui /Condui /Condui /Condui 224.3 227.9 376.6 323.3	De Auto Designed it 0 it 0 it 0 Flow (1/s) 27.1 54.2 81.2 108.3
1.000 5 1.001 7 1.002 1 1.003 1 1.004 PN 1.000 1.000 1.000	(m) (m 50.849 0.2 76.722 0.3 3.518 0.1 8.110 0.1 6.330 0.0 Rain (mm/hr) 0 50.00 1 50.00 2 50.00 3 50.00	<pre>) (1:x, 46 206. 83 200. 83 73. 81 100. 63 100.</pre>	<u>Netwo</u> e I.Area) (ha) 7 0.200 3 0.200 9 0.200 1 0.200 5 0.199 <u>N</u> US/IL Σ (m) 57.368 57.122 56.739 56.557 56.376	Drk Des T.E. (mins) 4.00 0.00 0.00 0.00 0.00 etwork : I.Area (ha) 0.200 0.400 0.600 0.800 0.999	bign Table Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 Results 5 E Base Flow (1/s) 0.0 0.0 0.0 0.0	<pre>k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 Table Foul (1/s) 0.0 0.0 0.0</pre>	226 <u>SW6</u> HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 450 450 450 450 450 0.0 0.0 0.0 0.0 0.0 0.0	Secti Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Nel (m/s) 1.41 1.43 2.37 2.03	ion Typ /Condui /Condui /Condui /Condui /Condui 224.3 227.9 376.6 323.3	De Auto Designed it 0 it 0 it 0 Flow (1/s) 27.1 54.2 81.2 108.3

DBFL Consulting Engineers		Page 2
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B5	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainage
Innovyze	Network 2020.1.3	

<u>Manhole Schedules for SW6</u>

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
SF7	59.634	2.266	Open Manhole	1200	1.000	57.368	450				
SF6	59.700	2.578	Open Manhole	1200	1.001	57.122	450	1.000	57.122	450	
SF5	60.059	3.320	Open Manhole	1200	1.002	56.739	450	1.001	56.739	450	
SF2	59.800	3.244	Open Manhole	1200	1.003	56.557	450	1.002	56.556	450	
SF1	59.800	3.424	Open Manhole	1200	1.004	56.376	450	1.003	56.376	450	
SF0	60.122	3.809	Open Manhole	0		OUTFALL		1.004	56.313	450	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SF7	704405.174	732761.722	704405.174	732761.722	Required	•
SF6	704455.974	732759.482	704455.974	732759.482	Required	
SF5	704458.547	732836.161	704458.547	732836.161	Required	N
SF2	704452.666	732848.333	704452.666	732848.333	Required	N.
SF1	704444.888	732864.688	704444.888	732864.688	Required	S.
SF0	704439.879	732868.557			No Entry	X

۰.

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B5	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0		SF7		57.368		Open Manhole	1200
1.001	0	450 450	SF6 SF5		57.122 56.739		Open Manhole Open Manhole	1200 1200
1.002	0	450	SF2		56.557		Open Manhole	1200
1.004	0	450	SF1				Open Manhole	1200

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.001	50.849 76.722 13.518	200.3	SF5	59.700 60.059 59.800		2.870	Open Manhole Open Manhole Open Manhole	1200 1200 1200
	18.110 6.330						Open Manhole Open Manhole	1200 0

DBFL Consulting Engineers	-	Page 4
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B5	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainago
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamaye
Innovyze	Network 2020.1.3	
Area	<u>a Summary for SW6</u>	
Pipe PIMP PIMP P Number Type Name	PIMP Gross Imp. Pipe Total (%) Area (ha) Area (ha) (ha)	
	100 0.200 0.200 0.200	
	100 0.200 0.200 0.200 100 0.000 0.000 0.000	
1.002		
1.003		
1.004	100 0.199 0.199 0.199	
	Total Total Total	
	0.999 0.999 0.999	
Free Flowin	<u>q Outfall Details for SW6</u>	
	<u></u>	
Outfall Outfall	C. Level I. Level Min D,L W	
Pipe Number Name		
	(m)	
1.004 SF0	60.122 56.313 0.000 0 0	
Simulat	<u>cion Criteria for SW6</u>	
Malumaturia Duna 66, Cas 66		1 0 000
	0.750 Additional Flow - % of Total F	
Areal Reduction Factor		-
Hot Start (mins)	0 Inlet Coeffieci 0 Flow per Person per Day (l/per/d	
Manhole Headloss Coeff (Global)		
Foul Sewage per hectare (l/s)	0.000 Output Interval (mi	ns) 1
Number of Input Hydrog	raphs 0 Number of Storage Structures 1	
Number of Online Con	trols 1 Number of Time/Area Diagrams 0	
Number of Offline Con	trols 0 Number of Real Time Controls 0	
<u>Synthe</u>	tic Rainfall Details	
Rainfall Model	FSR Profile Type S	ummer
Return Period (years)		0.750
-	and and Ireland Cv (Winter)	
M5-60 (mm)	16.700 Storm Duration (mins)	30
Ratio R	0.275	

Mi. The hydrologica	hoge_Site3_Di boge_Site3_Di <u>O</u> ke® Optimum M De nimum Outlet Pip Suggested Manhol Contr	Designe Checked Network nline Contro anhole: SF1, Unit Referenc Design Head (m sign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m pe Diameter (mm	hment B5 d by Darren by Dieter 2020.1.3 <u>ls for SW6</u> DS/PN: 1.0 e MD-SHE-0085)) m e Minimise u n e))	Bester 04, Volum 5-4500-2210 Calcu upstream st. Su 5	ne (m ³): -4500 2.210 4.5 lated	<u>6.6</u>
Upper Ormond Qu Dublin 7, Irela Date 25/02/2025 File 250127_Kis Innovyze <u>Hydro-Bra</u> Mi	hoge_Site3_Di boge_Site3_Di <u>O</u> ke® Optimum M De nimum Outlet Pip Suggested Manhol Contr	Site 3 SW Cato Designe Checked Network nline Contro anhole: SF1, Unit Referenc Design Head (m sign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm e Diameter (mm	hment B5 d by Darren by Dieter 2020.1.3 <u>ls for SW6</u> DS/PN: 1.0 e MD-SHE-0085)) m e Minimise u n e))	Bester 04, Volum 5-4500-2210 Calcu upstream st. Su 5	ne (m ³): -4500 2.210 4.5 lated orage rface Yes 85 6.376 100	rainag
Dublin 7, Irela Date 25/02/2023 File 250127_Kis Innovyze <u>Hydro-Bra</u> Mi	hoge_Site3_Di boge_Site3_Di <u>O</u> ke® Optimum M De nimum Outlet Pip Suggested Manhol Contr	SW Cato Designe Checked Network nline Contro anhole: SF1, Unit Referenc Design Head (m sign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m se Diameter (mm	d by Darren by Dieter 2020.1.3 <u>ls for SW6</u> <u>DS/PN: 1.0</u> e MD-SHE-0085) m e Minimise u n e))))	Bester 04, Volum 5-4500-2210 Calcu upstream st. Su 5	ne (m ³): -4500 2.210 4.5 lated orage rface Yes 85 6.376 100	rainag
Date 25/02/2025 File 250127_Kis Innovyze <u>Hydro-Bra</u> Mi	Shoge_Site3_Di <u>O</u> <u>ke® Optimum M</u> De nimum Outlet Pip Suggested Manhol Contr	Designe Checked Network nline Contro anhole: SF1, Unit Referenc Design Head (m sign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm ce Diameter (mm	d by Darren by Dieter 2020.1.3 <u>ls for SW6</u> <u>DS/PN: 1.0</u> e MD-SHE-0085) m e Minimise u n e))))	Bester 04, Volum 5-4500-2210 Calcu upstream st. Su 5	ne (m ³): -4500 2.210 4.5 lated orage rface Yes 85 6.376 100	rainag
File 250127_Kis Innovyze <u>Hydro-Bra</u> Mi The hydrologica	shoge_Site3_Di Q ke® Optimum M De nimum Outlet Pig Suggested Manhol Contr	Checked Network nline Contro anhole: SF1, Unit Reference Design Head (m esign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm e Diameter (mm e Diameter (mm	<pre>by Dieter 2020.1.3 ls for SW6 DS/PN: 1.0 e MD-SHE-0085)) m e Minimise u n e))))</pre>	Bester 04, Volum 5-4500-2210 Calcu upstream st. Su 5	ne (m ³): -4500 2.210 4.5 lated orage rface Yes 85 6.376 100	
Innovyze <u>Hydro-Bra</u> Mi The hydrologica	Q ke® Optimum M De nimum Outlet Pip Suggested Manhol Contr	Network nline Contro anhole: SF1, Unit Referenc Design Head (m sign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m e Diameter (mm	2020.1.3 <u>ls for SW6</u> <u>DS/PN: 1.0</u> e MD-SHE-0085) Minimise u n e))))	04, Volum 5-4500-2210 Calcu upstream st Su 5	ne (m ³): -4500 2.210 4.5 lated orage rface Yes 85 6.376 100	
<u>Hydro-Bra</u> Mi	ke® Optimum M De nimum Outlet Pig Suggested Manhol Contr	anhole: SF1, Unit Referenc Design Head (m ssign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm invert Level (m ce Diameter (mm	<u>ls for SW6</u> <u>DS/PN: 1.0</u> e MD-SHE-0085)) Minimise u n e))))	G-4500-2210 Calcu upstream st Su 5	-4500 2.210 4.5 lated orage rface Yes 85 6.376 100	<u>6.6</u>
Mi. The hydrologica	ke® Optimum M De nimum Outlet Pig Suggested Manhol Contr	anhole: SF1, Unit Reference Design Head (m esign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm e Diameter (mm e Diameter (mm	<u>DS/PN: 1.0</u> e MD-SHE-0085)) m e Minimise u n e))))	G-4500-2210 Calcu upstream st Su 5	-4500 2.210 4.5 lated orage rface Yes 85 6.376 100	<u>6.6</u>
Mi. The hydrologica	De I nimum Outlet Pip Suggested Manhol Contr	Unit Reference Design Head (m esign Flow (l/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m De Diameter (mm e Diameter (mm	e MD-SHE-0085) e Minimise u n e)))	G-4500-2210 Calcu upstream st Su 5	-4500 2.210 4.5 lated orage rface Yes 85 6.376 100	<u>6.6</u>
The hydrologica	I nimum Outlet Pip Suggested Manhol Contr	Design Head (m sign Flow (l/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m be Diameter (mm e Diameter (mm)) ™ Minimise u n e))))	Calcu upstream st Su 5	2.210 4.5 lated orage rface Yes 85 6.376 100	
The hydrologica	I nimum Outlet Pip Suggested Manhol Contr	sign Flow (1/s Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m De Diameter (mm e Diameter (mm) ™ Minimise u n e))))	Calcu upstream st Su 5	4.5 lated orage rface Yes 85 6.376 100	
The hydrologica	I nimum Outlet Pip Suggested Manhol Contr	Flush-Flo Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m De Diameter (mm e Diameter (mm	e Minimise u n e)))	upstream st Su 5	lated orage rface Yes 85 6.376 100	
The hydrologica	nimum Outlet Pig Suggested Manhol Contr	Objectiv Applicatio Sump Availabl Diameter (mm nvert Level (m De Diameter (mm e Diameter (mm	e Minimise u n e)))	upstream st Su 5	orage rface Yes 85 6.376 100	
The hydrologica	nimum Outlet Pig Suggested Manhol Contr	Sump Availabl Diameter (mm nvert Level (m Diameter (mm e Diameter (mm	e)))	5	Yes 85 6.376 100	
The hydrologica	nimum Outlet Pig Suggested Manhol Contr	Diameter (mm invert Level (m e Diameter (mm e Diameter (mm)))		85 6.376 100	
The hydrologica	nimum Outlet Pig Suggested Manhol Contr	nvert Level (m e Diameter (mm e Diameter (mm))		6.376 100	
The hydrologica	nimum Outlet Pig Suggested Manhol Contr	e Diameter (mm e Diameter (mm)		100	
The hydrologica	Suggested Manhol	e Diameter (mm)		1200	
		ol Points	Head (m) Flo			
	Design Poi			ow (l/s)		
		nt (Calculated) Flush-Flo ^m		4.5 3.4		
		Kick-Flo@		2.7		
	Mean Flow	over Head Range	- 9	3.4		
Hydro-Brake Opt invalidated	timum as specifi imum® be utilise (1/s) Depth (m)	ed then these s	torage routin	ng calculat.	ions will	be
0.100	2.5 1.200		3.000	5.2	7.000	7.7
0.200	3.2 1.400		3.500	5.6	7.500	8.0
0.300	3.4 1.600		4.000	5.9	8.000	8.2
0.400	3.4 1.800		4.500	6.3	8.500	8.5
0.500	3.4 2.000		5.000	6.6	9.000	8.7
0.600 0.800	3.2 2.200 2.8 2.400		5.500 6.000	6.9 7.2	9.500	8.9
1.000	3.1 2.600		6.500	7.5		

DBFL Consulting Engineers		Page 6
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B5	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

Storage Structures for SW6

Tank or Pond Manhole: SF1, DS/PN: 1.004

Invert Level (m) 58.800

Depth (m) Area (m²) Depth (m) Area (m²)

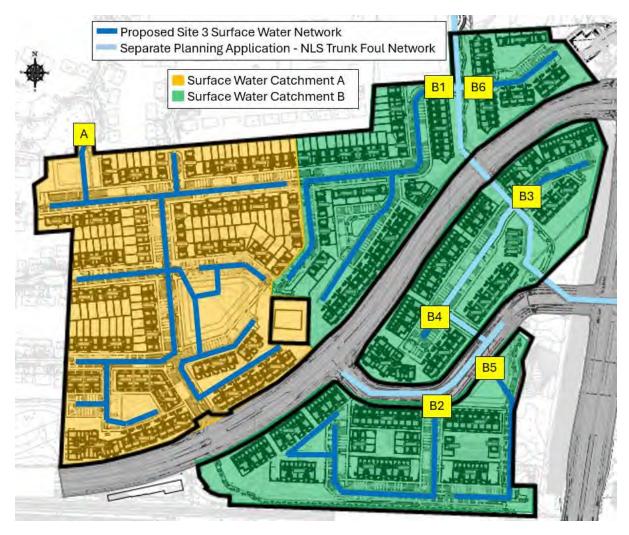
0.000 600.0 1.000 800.0

-		ing	Engir		>							Pag	ge 7	
rmond	House					Ki	shoge	:						1
pper C	rmond	Qua	ay			Si	te 3							
ublin	7, Ir	elar	nd			SW	Cato	hment	с В5			M	icro	
ate 25	5/02/2	025				De	signe	d by	Darı	ren Ri	chards	on 💾	ninage	
ile 25	50127_	Kisł	hoge_S	ite	B_Dr.	Ch	ecked	l by I	Diete	er Bes	ster	וט	ainage	1
Innovyz	e					Ne	twork	2020	0.1.3	3				_
	nhole H	Ho Headl ewage Numł Nur	Hot Star Soss Co per h ber of mber of Rainfa	Start t Lev eff (ectar Inpu f On Off ll Mc Rec -60 ((min rel (m Globa re (l/ t Hyd: line (line (<u>Sy</u> odel gion S mm)	s) m) 1) 0.50 s) 0.00 cographs Controls Controls cotland sk Warn alysis	0 Ad 0 0 10 Flor 0 5 0 Nu 5 0 Nu 8 0 Nu Rainf 1 and 1 ing (m	dditio MAD w per mber (mber (mber (international FS Irelan 16.70 m) 30 :ep F	nal E DD Fac Perso of St of Ti of Re etail R d Cv 0 Cv 0.0 ine 1	stor * Inl on per orage : me/Area al Time Ratic (Summe (Winte DVE	10m³/ha et Coeff	ns 0 Ls 0 ON	.000 .800	
		Du	ration		le(s) mins)	15				80, 240), 360, 4	nd Winter 180, 600,		
	Retu	ırn P		(s) (s) (y	mins) ears)	15				80, 240 2160, 2), 360, 4 2880, 432 7200, 864 1,			odelled for
	Retu	ırn P	ration eriod(:	(s) (s) (y	mins) ears)	15			140 , :	80, 240 2160, 2	0, 360, 4 2880, 432 7200, 864 1, 20	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20∢	+20% m climate o	
	Retu US/MH	rn P <mark>Cl</mark>	ration eriod(:	(s) (s) (y	mins) ears)	15			440, : Wa	80, 240 2160, 2	0, 360, 4 2880, 432 7200, 864 1, 20	180, 600, 20, 5760, 10, 10080 30, 100	climate o	
PN		rn P <mark>Cl</mark>	ration eriod(:	(s) (s) (y Chang	mins) ears)	15		60, 14	440, 1 Wa L L	80, 240 2160, 2	0, 360, 4 2880, 432 7200, 864 1, 20 urchargeo	180, 600, 20, 5760, 10, 10080 30, 100 0, 20, 20 d Flooded	climate o	
	US/MH Name	rn P <mark>Cl</mark>	ration eriod(: imate ((s) (s) (y Chang E	mins) ears) e (%)	15	720, 9	60, 14 US/C (m)	440, 1 Wa L L	80, 240 2160, 2 ater S evel (m)	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m)	 180, 600, 20, 5760, 40, 10080 30, 100 30, 20, 20 d Flooded Volume (m³) 	climate of Flow / Cap.	
PN 1.000 1.001	US/MH Name SF7	rn P Cl 120	ration eriod(: imate (minute	(s) (s) (y Chang E : 100	mins) ears) e (%) Svent year	15	720, 9 1+20%	60, 14 US/C (m) 59.63	Wa L L 34 59	80, 240 2160, 2 Ater S evel (m) .604	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth	<pre>480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 d Flooded Volume (m³) 6 0.000</pre>	climate of	
1.000 1.001 1.002	US/MH Name SF7 SF6 SF5	120 180	ration eriod(: imate(minute minute	(s) (s) (y Chang E = 100 = 100 = 100	mins) ears) e (%) Svent year year year	Uinter Winter Winter Winter	I+20% I+20% I+20% I+20% I+20%	60, 14 US/C (m) 59.63 59.70 60.05	Wa L L 34 59 00 59 59 59	80, 24(2160, 2 ater S evel (m) .604 .594 .524	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.78 2.02 2.33	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27	Attenuation
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	ration eriod(: imate(minute minute minute	(s) (y s) (y Chang E = 100 = 100 = 100 = 100	mins) ears) e (%) Svent year year year year year	Winter Winter Winter Winter Winter	1+20% 1+20% 1+20% 1+20% 1+20% 1+20%	60, 14 US/C (m) 59.63 59.70 60.05 59.80	Wa L L 34 59 59 59 50 59 59 59	<pre>80, 24(2160, 2 ater S evel (m) .604 .594 .524 .502</pre>	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.78 2.02 2.33 2.49	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	ration eriod(: imate(minute minute minute	(s) (y s) (y Chang E = 100 = 100 = 100 = 100	mins) ears) e (%) Svent year year year year year	Uinter Winter Winter Winter	1+20% 1+20% 1+20% 1+20% 1+20% 1+20%	60, 14 US/C (m) 59.63 59.70 60.05 59.80	Wa L L 34 59 59 59 50 59 59 59	<pre>80, 24(2160, 2 ater S evel (m) .604 .594 .524 .502</pre>	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.78 2.02 2.33	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27	Attenuation
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	ration eriod(: imate(minute minute minute	(s) (y s) (y Chang E = 100 = 100 = 100 = 100	mins) ears) e (%) Svent year year year year year	Winter Winter Winter Winter Winter	1+20% 1+20% 1+20% 1+20% 1+20% 1+20%	<pre>60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80</pre>	Wa L L 34 59 00 59 59 59 00 <mark>59</mark> 00 59	<pre>80, 24(2160, 2 ater S evel (m) .604 .594 .524 .502</pre>	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.78 2.02 2.33 2.49	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	ration eriod(: imate(minute minute minute	(s) (y s) (y Chang E = 100 = 100 = 100 = 100 = 100	mins) ears) e (%) Svent year year year year year year	Winter Winter Winter Winter Winter	I+20% I+20% I+20% I+20% I+20% I+20%	<pre>60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80</pre>	Wa L L 34 59 59 59 50 59 59 59	<pre>80, 24(2160, 2 ater S evel (m) .604 .594 .524 .502</pre>	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.78 2.02 2.33 2.49	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	ration eriod(: imate(minute minute minute	(s) (y s) (y Chang E = 100 = 100 = 100 = 100 = 100	mins) ears) e (%) Svent year year year year year year	Winter Winter Winter Winter Winter	I+20% I+20% I+20% I+20% I+20% I+20% W Max:	<pre>60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80</pre>	Wa L L 34 59 59 59 50 59 50 59 00 59 00 59 Pipe Flow	ater S evel (m) .594 .502 .501	0, 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.78 2.02 2.33 2.49 2.67	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	ration eriod (: imate (minute minute minute PI	(s) (s) (y Chang E 100 100 100 100 100 100 100	mins) ears) e (%) e (%) year year year year year year year year	Winter Winter Winter Winter Winter	I+20% I+20% I+20% I+20% I+20% I+20% W Max: Vol	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 59.80	Wa L L 34 59 59 59 50 59 50 59 00 59 Pipe Flow (1/s)	80, 24(2160, 2 ater S evel (m) .604 .594 .524 .501 Sta	<pre>), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.78 2.022 2.333 2.673 tus</pre>	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	ration eriod(: imate (minute minute minute minute	(s) (s) (y Chang E 100 100 100 100 100 100 100	mins) ears) e (%) wear year year year year year s/MH	Winter Winter Winter Winter Winter	1+20% 1+20% 1+20% 1+20% 1+20% 1+20% W Max: Vol 2	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 imum (m ³) 523	<pre>Wa L L 34 59 00 59 59 59 00 59 00 59 Pipe Flow (1/s) 28.1</pre>	ater S evel (m) .594 .502 .501	<pre>), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.784 2.022 2.333 2.493 2.673 tus RISK</pre>	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	<pre>ration eriod(: imate (minute minute minute minute Pl 1.0 1.0 1.0</pre>	(s) (s) (y Chang E 100 100 100 100 01 02	mins) ears) e (%) vear year year year year year S/MH SF7 SF6 SF5	Winter Winter Winter Winter Winter	<pre>I+20% I+20% I+20% I+20% I+20% I+20% Vol 2 10 15</pre>	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 59.80 imum (m ³) 5.523 .687 .155	<pre>Wath the second se</pre>	80, 24(2160, 2 evel (m) .604 .594 .501 .501 Sta FLOOD FLOOD SURCH), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.781 2.022 2.333 2.493 2.673 tus RISK RISK RISK ARGED	480, 600, 20, 5760, 40, 10080 30, 100 0, 20, 20 4 Flooded Volume (m ³) 6 0.000 2 0.000 5 0.000 5 0.000	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	<pre>ration eriod(: imate (minute minute minute minute Pl 1.0 1.0 1.0 1.0 1.0</pre>	(s) (s) (y Chang 2 100 2 100 2 100 2 100 2 100 2 100 3 V 3 N 00 01 02 03	mins) ears) e (%) vear year year year year year S/MH SF7 SF6 SF5 SF2	Winter Winter Winter Winter Winter	<pre>I+20% I+20% I+20% I+20% I+20% I+20% Vol 2 10 15 5</pre>	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 59.80 59.80 10, 14 59.63 59.80 50.80 50.	<pre>Water State S</pre>	80, 24(2160, 2 evel (m) .604 .594 .501 .501 .501 .501 .501 .501 .501 .501	<pre>), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.784 2.022 2.333</pre>	 180, 600, 20, 5760, 100, 10080 30, 100 0, 20, 20 d Flooded Volume (m³) 6 0.000 0.000 0.000 5 0.000 5 0.000 	Flow / Cap . 0.14 0.26 0.27 0.11	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	<pre>ration eriod(: imate (minute minute minute minute Pl 1.0 1.0 1.0</pre>	(s) (s) (y Chang 2 100 2 100 2 100 2 100 2 100 2 100 3 V 3 N 00 01 02 03	mins) ears) e (%) vear year year year year year S/MH SF7 SF6 SF5	Winter Winter Winter Winter Winter	<pre>I+20% I+20% I+20% I+20% I+20% I+20% Vol 2 10 15 5</pre>	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 59.80 imum (m ³) 5.523 .687 .155	<pre>Water State S</pre>	80, 24(2160, 2 evel (m) .604 .594 .501 .501 Sta FLOOD FLOOD SURCH	<pre>), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.784 2.022 2.333</pre>	 180, 600, 20, 5760, 40, 10080 30, 100 30, 100 20, 20 d Flooded Volume (m³) 6 0.000 5 0.000 5 0.000 5 0.000 5 0.000 	Climate (Flow / Cap. 0.14 0.26 0.27 0.11 0.03	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	<pre>ration eriod(: imate (minute minute minute minute Pl 1.0 1.0 1.0 1.0 1.0</pre>	(s) (s) (y Chang 2 100 2 100 2 100 2 100 2 100 2 100 3 V 3 N 00 01 02 03	mins) ears) e (%) vear year year year year year S/MH SF7 SF6 SF5 SF2	Winter Winter Winter Winter Winter	<pre>I+20% I+20% I+20% I+20% I+20% I+20% Vol 2 10 15 5</pre>	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 59.80 59.80 10, 14 59.63 59.80 50.80 50.	<pre>Water State S</pre>	80, 24(2160, 2 evel (m) .604 .594 .501 .501 .501 .501 .501 .501 .501 .501	<pre>), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.784 2.022 2.333</pre>	 180, 600, 20, 5760, 40, 10080 30, 100 30, 100 20, 20 d Flooded Volume (m³) 6 0.000 5 0.000 5 0.000 5 0.000 5 0.000 	Climate of Flow / Cap. 0.14 0.26 0.27 0.11 0.03	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	<pre>ration eriod(: imate (minute minute minute minute Pl 1.0 1.0 1.0 1.0 1.0</pre>	(s) (s) (y Chang 2 100 2 100 2 100 2 100 2 100 2 100 3 V 3 N 00 01 02 03	mins) ears) e (%) vear year year year year year S/MH SF7 SF6 SF5 SF2	Winter Winter Winter Winter Winter	<pre>I+20% I+20% I+20% I+20% I+20% I+20% Vol 2 10 15 5</pre>	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 59.80 59.80 10, 14 59.63 59.80 50.80 50.	<pre>Water State S</pre>	80, 24(2160, 2 evel (m) .604 .594 .501 .501 .501 .501 .501 .501 .501 .501	<pre>), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.784 2.022 2.333</pre>	 180, 600, 20, 5760, 40, 10080 30, 100 30, 100 20, 20 d Flooded Volume (m³) 6 0.000 5 0.000 5 0.000 5 0.000 5 0.000 	Climate of Flow / Cap. 0.14 0.26 0.27 0.11 0.03	Attenuation Pond 3 -
1.000 1.001 1.002 1.003	US/MH Name SF7 SF6 SF5 SF2	120 120 180 960	<pre>ration eriod(: imate (minute minute minute minute Pl 1.0 1.0 1.0 1.0 1.0</pre>	(s) (s) (y Chang 2 100 2 100 2 100 2 100 2 100 2 100 3 V 3 N 00 01 02 03	mins) ears) e (%) vear year year year year sF7 SF6 SF5 SF2 SF1	Winter Winter Winter Winter Winter	I+20% I+20% I+20% I+20% I+20% I+20% W Max: Vol 2 100 15 5 5 473	60, 14 US/C (m) 59.63 59.70 60.05 59.80 59.80 59.80 imum (m ³) .523 .687 .155 .286 .864	Wa L L 34 59 59 59 50 59 50 59 50 59 00 59 00 59 00 59 00 59 28.1 56.2 64.7 26.8 5.3	80, 24(2160, 2 evel (m) .604 .594 .501 .501 .501 .501 .501 .501 .501 .501	<pre>), 360, 4 2880, 432 7200, 864 1, 20 urcharged Depth (m) 1.784 2.022 2.333</pre>	 180, 600, 20, 5760, 40, 10080 30, 100 30, 100 20, 20 d Flooded Volume (m³) 6 0.000 5 0.000 5 0.000 5 0.000 5 0.000 	Climate of Flow / Cap. 0.14 0.26 0.27 0.11 0.03	Attenuation Pond 3 -

INDET CODE	sulting	Fnaina	are							Day	ge 1
Ormond Ho		Eligine	=15	Ki	shoge					Fat	ye i
Upper Orr		3.7			te 3						
Dublin 7	-	-		-	Catchmen	+ B6					
Date 25/0		<u> </u>		-	signed by		en Ri	char	dson	— M	icro
File 2502		ore sit	te3 Dr		ecked by				ason	D	ainage
Innovyze	_	oge_or			twork 202						
111110 V y 2 C					ework 202	0.1.0					
	<u>STO</u>	RM SEWE		-	the Modif			<u>nal N</u>	<u>letho</u>	<u>d</u>	
		Pip	be Sizes	STANDA	RD Manhole	Sizes	STANDA	ARD			
		FS	R Rainf	all Mode	el - Scotla	nd and	Irela	nd			
	Ret	urn Per	iod (yea	ars)	100					PIMP (,
				(mm) 16. io R 0.						hange (aight (%) 0 m) 0.200
	Maximu	um Rainf							-	-	m) 1.500
Maximum 7					30 Min De						
		oul Sewa etric Ru	-						-	nly (m/ ion (1:	
	voruille	JULIU RU.	NOTT COR		, 50 M.	TII OTOF	LC TOT	opul	m⊥sat.	-OII (1;	,
			De	signed v	with Level :	Soffits	5				
			<u>Tim</u>	<u>e Area</u>	Diagram	for SV	<u>17</u>				
			r	lime A	rea Time	Area					
			(n	nins) (1	ha) (mins)	(ha)					
				0-4 0.	424 4-8	0.116					
				man Can	taibuting ((he) -	0 540	/	SW 0	Catchmer	nt B6 -
			Total A	Area Con	tributing ((ha) =	0.540	\leftarrow	-	Catchmer rmeable	
					tributing (Volume (m³)			<	-		
			Tota	al Pipe	Volume (m³)	= 5.1	42	<	-		
			Tota	al Pipe		= 5.1	42		Impe	rmeable	Area
	ength Fal: (m) (m)	-	Tota <u>Netwo</u> I.Area	ork Des T.E.	Volume (m³)	= 5.1 e for k	42	DIA	Impe		Area
1.000 30	(m) (m) 0.960 0.15	(1:X) 5 199.7	Tota <u>Netwo</u> I.Area (ha) 0.270	nl Pipe Dork Des T.E. (mins) 4.00	Volume (m³) sign Table Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600	42 <u>SW7</u> HYD SECT	DIA (mm) 300	Impe Secti Pipe/	on Type Condui	Area e Auto Design t é
1.000 30	(m) (m)	(1:X) 5 199.7	Tota <u>Netwo</u> I.Area (ha) 0.270	nl Pipe ork Des T.E. (mins)	Volume (m³) sign Table Base Flow (l/s) 0.0	= 5.1 e for k (mm)	42 <u>SW7</u> HYD SECT	DIA (mm) 300	Impe Secti Pipe/	on Typ	Area e Auto Design t e
1.000 30	(m) (m) 0.960 0.15	(1:X) 5 199.7	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270	al Pipe T.E. (mins) 4.00 0.00	Volume (m³) sign Table Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600	42 <u>SW7</u> HYD SECT	DIA (mm) 300	Impe Secti Pipe/	on Type Condui	Area e Auto Design t é
1.000 30	(m) (m) 0.960 0.15	(1:X) 5 199.7 9 199.9	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u>	al Pipe T.E. (mins) 4.00 0.00	Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 Results '	= 5.1 e for k (mm) 0.600 0.600 Table	42 <u>SW7</u> HYD SECT	DIA (mm) 300 300	Impe Secti Pipe/ Pipe/	Condui Condui Condui	Area e Auto Design t e Flow
1.000 30 1.001 41	(m) (m) 0.960 0.15 0.778 0.20 Rain	(1:X) 5 199.7 9 199.9	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u>	nl Pipe Drk Des T.E. (mins) 4.00 0.00 etwork	Volume (m ³) sign Table Base Flow (l/s) 0.0 0.0 Results '	= 5.1 e for k (mm) 0.600 0.600 Table Foul	42 <u>SW7</u> HYD SECT 0 0 Add 1	DIA (mm) 300 300	Impe Secti Pipe/ Pipe/	Condui Condui Condui	Area e Auto Design t e Flow
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr)	(1:X) 5 199.7 9 199.9 T.C. 1 (mins)	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	nl Pipe T.E. (mins) 4.00 0.00 etwork : I.Area (ha)	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s)	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui Condui	Area e Auto Design t e Flow (1/s)
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL <u>E</u> (m) 55.052	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 e for k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6
1.000 30 1.001 41 PN 1.000	(m) (m) 0.960 0.15 0.778 0.20 Rain (mm/hr) 50.00	(1:X) 5 199.7 9 199.9 T.C. 1 (mins) 4.47 5	Tota <u>Netwo</u> I.Area (ha) 0.270 0.270 <u>N</u> US/IL E (m) 35.052 34.897	al Pipe Drk Des T.E. (mins) 4.00 0.00 etwork : I.Area (ha) 0.270 0.540	Volume (m ³) Base Flow (l/s) 0.0 0.0 Results E Base Flow (l/s) 0.0	= 5.1 k (mm) 0.600 0.600 Table Foul (1/s) 0.0	42 <u>SW7</u> HYD SECT 0 0 Add 1 (1/	DIA (mm) 300 300 Flow s) 0.0	Secti Pipe/ Pipe/ Vel (m/s) 1.11	Condui Condui Condui (Condui 2000 (1/s) 78.4	Area a Auto Design t a Flow (1/s) 36.6

DBFL	Consu	lting	g Engi:	neers								Page	2	
	nd Hou					Ki	shoge							
Uppe	r Ormc	ond Qu	ay			Si	te 3							
Dubl	in 7,	Irela	and			SW	Catch	nment B6				Mic	rn in	
Date	25/02	2025	5			Dea	signed	d by Dar:	ren R	icha	ardson			
File	25012	7_Kis	hoge_	Site3_	Dr			by Diete		stei	<u> </u>	סוט	inage	
Inno	vyze					Ne	twork	2020.1.	3			I		
				M	lanhol	Le Sc	chedul	es for S	<u>SW7</u>					
MH Name	MH CL (m)	MH Depth (m)		1H ection	MF Diam. (mn	,L*W	PN	Pipe Out Invert Level (m)	Diame (mm		PN	Pipes In Invert Level (m)	Diameter	Backdrop (mm)
SG2	58.229	3.177	Open N	Manhole		1200	1.000	55.052		300				
	58.138						1.001	54.897			1.000	54.897	300)
	57.890			Manhole		0	1.001	OUTFALL		000	1.001			
						5								
			Manhole Easting (m)	Nort	hole thing m)		rsections asting (m)	on Interse Nortl (m	hing		nhole cess	Layout (North)		
		SG2 70	4489.89	93 73312	27.026	70	4489.8	93 73312	27.026	Req	uired			
	S	SG1 70	4465.93	32 73310	07.419	70	4465.93	32 73310	07.419	Req	uired	-0**		
	5	SG0 70	4424.35	50 73310)3.386					No	Entry	•		
					©19	982-2	2020 I	innovyze						

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7, Ireland	SW Catchment B6	Micro
Date 25/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	·


<u>Upstream Manhole</u>

PN	-	Diam (mm)	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000 1.001						Open Manhole Open Manhole	1200 1200

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	30.960	199.7	SG1	58.138	54.897	2.941	Open Manhole	1200
1.001	41.778	199.9	SG0	57.890	54.688	2.902	Open Manhole	0

per Ormond Quay blin 7, Ireland te 25/02/2025 le 250127_Kishoge_Site3_Dr Site 3 SW Catchment B6 Designed by Darren Richardson Checked by Dieter Bester	DBFL Consulting Engineers		Page 4
SW Catchment B6 Designed by Darren Richardson te 25/02/2025 Designed by Darren Richardson le 250127_Kishoge_Site3_Dr Checked by Dieter Bester novyze Network 2020.1.3 Area Summary for SW7 Pipe PIMP PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 100 0.270 0.270 1.001 100 0.270 0.270 0.540 0.540 Free Flowing Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) 1.001 SGO 57.890 54.688 0.000 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m*/ha Storage 2.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 1 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 N	Ormond House	Kishoge	
te 25/02/2025 le 250127_Kishoge_Site3_Dr novyze Designed by Darren Richardson Checked by Dieter Bester Network 2020.1.3 Area Summary for SW7 Pipe PIMP PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) 1.000 100 0.270 0.270 0.270 1.001 100 0.270 0.270 0.270 Total Total Total 0.540 0.540 Free Flowing Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.001 SG0 57.890 54.688 0.000 0 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start (los) 0 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Summer Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30	Upper Ormond Quay	Site 3	
te 25/02/2025 le 250127_Kishoge_Site3_Dr Designed by Darren Richardson Checked by Dieter Bester Network 2020.1.3 Area Summary for SW7 Pipe PIMP PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 100 0.270 0.270 0.270 1.001 100 0.270 0.270 0.270 Total Total Total 0.540 0.540 0.540 Free Flowing Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (n) I. Level (mm) (mm) (m) 1.001 SG0 57.890 54.688 0.000 0 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start (mins) 0 Inlet Coefficient 0.800 Manbole Headloss Coeff (Clobal) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Online Controls 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Areal Redurn Period (years) Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mn) 16.700 Storm Duration (mins) 30	Dublin 7, Ireland	SW Catchment B6	Micco
Network 2020.1.3 Network 2020.1.3 Area Summary for SW7 Pipe PIMP PIMP FIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 100 0.270 0.270 1.001 100 0.270 0.270 1.001 100 0.270 0.270 1.001 100 0.270 0.270 1.001 100 0.270 0.270 Total Total Outfall Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (n) I. Level (mm) (mm) (m) (m) (n) Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MuD Factor * 10m*/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start (mins) 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real T	Date 25/02/2025	Designed by Darren Richardson	
Novyze Network 2020.1.3 Area Summary for SW7 Fipe PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 100 0.270 0.270 0.270 1.001 100 0.270 0.270 0.270 0.270 Total Total Total 0.540 0.540 Free Flowing Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.001 SG0 57.890 54.688 0.000 0 0 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m'/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start (mins) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Summer Region Scotland and Ireland Cv (Winter) 0.840 MS-60 (mm) 16.700 Storm Duration (mins) 30	File 250127 Kishoge Site3 Dr	Checked by Dieter Bester	Diamay
Area Summary for SWT Pipe PIMP PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 100 0.270 0.270 0.270 1.001 100 0.270 0.270 0.270 1.001 100 0.270 0.270 0.270 Total Total Total 0.540 Free Flowing Outfall Details for SWT Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (n) I. Level (mm) (mm) (m) (m) 1.001 SG0 57.890 54.688 0.000 0 0 Simulation Criteria for SWT Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Area (Min 0) Area (Min 0) Mumber of Social Flow 0.000 Area Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Mumber of Input Hydrographs 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0 Mumber of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Of	 Innovyze		
Pipe PIMP PIMP PIMP for cross fmg. Fipe Total Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 - 100 0.270 0.270 0.270 1.001 - 100 0.270 0.270 Total Total Total 0.540 0.540 0.540 Free Flowing Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D.L % Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.001 SG0 57.890 54.688 0.000 0 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start (mins) 0 Inlet Coefficient 0.800 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Time Area Diagrams 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Real Time Controls 0 Statial Model FSR Profile Type Summer (V (Winter) 0.880 Ned Store (Winter) 0.880 Ned Store (Winter) 0.880			
Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 - 100 0.270 0.270 0.270 1.001 - 100 0.270 0.270 0.270 Total Total Total Total 0.540 0.540 Free Flowing Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) 1.001 SG0 57.890 54.688 0.000 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 100 /ha Storage 2.000 Bot Start Level (min) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 1 Mumber of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Real Time Controls 0 0.000 Structure Feriod (years) 100 CV (Summer) 0.750		-	
<pre>1.001 100 0.270 0.270 0.270 Total Total Total Total 0.540 0.540 0.540 Free Flowing Outfall Details for SWT Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.001 SG0 57.890 54.688 0.000 0 0 Simulation Criteria for SWT Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Summer Return Period (years) 100 C v (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30</pre>	_		
<pre>1.001 100 0.270 0.270 0.270 Total Total Total Total 0.540 0.540 0.540 Free Flowing Outfall Details for SWT Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.001 SG0 57.890 54.688 0.000 0 0 Simulation Criteria for SWT Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Profile Type Summer Return Period (years) 100 C v (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30</pre>	1 000	100 0 270 0 270 0 270	
Total Total Total Total 0.540 0.540 0.540 Free Flowing Outfall Details for SW7 Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) 1.001 SG0 57.890 54.688 0.000 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Not Start (mins) 0 Hot Start (mins) 0 Inlet Coefficient 0.800 0 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 10 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Supthetic Rainfall Details Rainfall Model FSR Profile Type Summer Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.880 M5-60 (mm) 16.			
Free Flowing Outfall Details for SW7Outfall Outfall C. Level I. Level Min D.L N Pipe Number Name (n) (n) I. Level (nmm) (nmm) (m)1.001 SG0 57.890 54.688 0.000 0 0J.001 SG0 57.890 54.688 0.000 0 0Simulation Criteria for SW7Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0Exampli Model Redurn Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 (5.00 Diago Cv (Summer) 0.30	1.001		
Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) 1.001 SG0 57.890 54.688 0.000 0 Discretion Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Supthetic Rainfall Details Expinal Model FSR Profile Type Summer Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-0 (mm) 16.700 Storm Duration (mins) 30		0.540 0.540 0.540	
Outfall Outfall C. Level I. Level Min D, L W Pipe Number Name (m) (m) L. Level (mm) (mm) (m) 1.001 SG0 57.890 54.688 0.000 0 0 Distribution of the state of			
Pipe NumberName(m)(m)I. Level (mm) (mm) (m)1.001SG057.89054.6880.00000Simulation Criteria for SW7Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins)0Inlet Coefficient 0.800 100Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.000 Run Time (mins)60Foul Sewage per hectare (1/s)0.000Output Interval (mins)1Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 01Extern For fold Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0Extern Period (years)Mainfall ModelFSRProfile Type Summer Cv (Summer) 0.750 Region Scotland and IrelandCv (Winter) 0.840 M5-60 (mm)Mach Colspan="4">South and IrelandCv (Winter) 0.840 M5-60 (mn)	<u>Free Flowin</u>	g Outfall Details for SW/	
(m) 1.001 SGO 57.890 54.688 0.000 0 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Expithetic Rainfall Details Rainfall Model FSR Profile Type Summer Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30	Outfall Outfall		
1.001 SG0 57.890 54.688 0.000 0 Simulation Criteria for SW7 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Inlet Coefficient 0.800 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Kainfall Model FSR Profile Type Summer Region Scotland and Ireland Cv (Winter) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30	Pipe Number Name		
Simulation Criteria for SW7Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins) 0Inlet Coefficient 0.800Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000Manhole Headloss Coeff (Global) 0.500Run Time (mins) 60Foul Sewage per hectare (l/s) 0.000Output Interval (mins) 1Number of Input Hydrographs 0 Number of Storage Structures 0Number of Offline Controls 0 Number of Time/Area Diagrams 0Number of Offline Controls 0 Number of Real Time Controls 0Expetitic Rainfall DetailsRainfall ModelFSRProfile Type SummerReturn Period (years)100Cv (Summer) 0.750Region Scotland and IrelandCv (Winter) 0.840M5-60 (mm)16.700 Storm Duration (mins)	1 001 000		
Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Expithetic Rainfall Details Rainfall Model FSR Profile Type Summer Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30	1.001 SG0	57.890 54.688 0.000 0 0	
Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Inlet Coefficient 0.800Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.000Manhole Headloss Coeff (Global)0.500Run Time (mins)Foul Sewage per hectare (1/s)0.000Output Interval (mins)Number of Input Hydrographs0 Number of Storage Structures 0Number of Offline Controls0 Number of Time/Area DiagramsNumber of Offline Controls0 Number of Real Time ControlsExpendence of FSRRainfall ModelFSRReturn Period (years)100Cv (Summer)0.750Region Scotland and IrelandCv (Winter)M5-60 (mm)16.700 Storm Duration (mins)	Simulat	tion Criteria for SW7	
Synthetic Rainfall DetailsRainfall ModelFSRProfile Type SummerReturn Period (years)100Cv (Summer)0.750Region Scotland and IrelandCv (Winter)0.840M5-60 (mm)16.700 Storm Duration (mins)30	Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s) Number of Input Hydrog Number of Online Con	0 Inlet Coefficci 0 Flow per Person per Day (l/per/d 0.500 Run Time (mi 0.000 Output Interval (mi graphs 0 Number of Storage Structures 0 ntrols 0 Number of Time/Area Diagrams 0	ent 0.800 ay) 0.000 ns) 60
Rainfall ModelFSRProfile Type SummerReturn Period (years)100Cv (Summer)0.750Region Scotland and IrelandCv (Winter)0.840M5-60 (mm)16.700 Storm Duration (mins)30			
Return Period (years) 100 Cv (Summer) 0.750 Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30	Synthe	tic Rainfall Details	
Region Scotland and Ireland Cv (Winter) 0.840 M5-60 (mm) 16.700 Storm Duration (mins) 30			
M5-60 (mm) 16.700 Storm Duration (mins) 30		· · · · · · · · · · · · · · · · · · ·	
	5		
			30
		·····	
©1982-2020 Innovyze	©19	982-2020 Innovyze	

Ormond House	ing Engineers				Page 5
		Kishoge			
Upper Ormond	Quay	Site 3			
Dublin 7, Ire	eland	SW Catchment	В6		Micro
Date 25/02/20)25	Designed by D	arren Richar		
File 250127_F	Kishoge_Site3_Dr	. Checked by Di	eter Bester		Drainage
 Innovyze		Network 2020.	1.3		
Manhole He Foul Set	Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) eadloss Coeff (Global) wage per hectare (l/s) Number of Input Hydrog Number of Online Cor Number of Offline Cor Rainfall Model Region Sco M5-60 (mm) Margin for Flood Risk	0 MADD 0 0.500 Flow per Pe 0.000 graphs 0 Number of htrols 0 Number of hetic Rainfall Det FSR otland and Ireland 16.700 Warning (mm) 300. ysis Timestep Fir	al Flow - % of Factor * 10m ³ / Inlet Co erson per Day Storage Struc Time/Area Dia Real Time Con ails Ratio R 0. Cv (Summer) 0. Cv (Winter) 0.	ha Storag effiecien l/per/day tures 0 grams 0 trols 0 275 750 840 us ON	e 2.000 t 0.800
Retur	Profile(s) Duration(s) (mins) on Period(s) (years) Climate Change (%)	15, 30, 60, 120 720, 960, 144	, 180, 240, 36 0, 2160, 2880,		0, 0, 80
			Water Surcha	ged Flood	ed
US/MH PN Name	Event	US/CL (m)	Level Dept (m) (m)	h Volur (m³)	ne Flow / Cap.
	15 minute 100 year Wi	nter I+20% 58.229	56.867 1.	515 0.0 359 0.0	00 1.40
	15 minute 100 year Wi	1001 1,200 00.100	50 . 550 ±.	559 0.0	2.00
		P	ipe low	559 0.0	
	US/MH Ove	P	ipe low	559 0.0	
	US/MH Ove	P. erflow Maximum F. l/s) Vol (m³) (l	ipe low		

Kishoge Site 3 – Surface Water Network Catchments & Outfalls

Appendix B : FOUL SEWER NETWORK CALCULATIONS [MICRO-DRAINAGE NETWORK MODULE]

DBFL Consulting Engineers		Page 1
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment A	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

FOUL SEWERAGE DESIGN

Design Criteria for FS1

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)0Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.200Flow Per Person (1/per/day)150.00Maximum Backdrop Height (m)1.500Persons per House2.70Min Design Depth for Optimisation (m)1.200Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor6.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for FS1

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Ba Flow	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.001	27.076 16.551 13.699	0.083	199.4	0.000	6 6 38		0.0	1.500 1.500 1.500	0 0 0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0
	23.897 34.114				0			1.500 1.500	0		Pipe/Conduit Pipe/Conduit	⊕
	20.820				7			1.500	0		Pipe/Conduit	•
1.005 1.006	32.105 20.392 5.857 71.816	0.102 0.029	199.9 202.0	0.000	7 2 3 7		0.0	1.500 1.500 1.500 1.500	0 0 0	225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0 0

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	-			Cap (1/s)	
1.000	54.336	0.000	0.0	6	0.0	12	0.20	0.81	32.2	0.2
1.001	54.201	0.000	0.0	12	0.0	17	0.26	0.81	32.3	0.3
1.002	54.118	0.000	0.0	50	0.0	32	0.40	0.81	32.1	1.4
2.000	54.169	0.000	0.0	0	0.0	0	0.00	0.81	32.1	0.0
1.003	54.050	0.000	0.0	50	0.0	32	0.40	0.81	32.3	1.4
3.000	53.983	0.000	0.0	7	0.0	13	0.22	0.81	32.2	0.2
1.004	53.879	0.000	0.0	64	0.0	36	0.43	0.81	32.3	1.8
1.005	53.718	0.000	0.0	66	0.0	37	0.44	0.81	32.2	1.9
1.006	53.616	0.000	0.0	69	0.0	38	0.44	0.81	32.1	1.9
1.007	53.587	0.000	0.0	76	0.0	39	0.46	0.81	32.2	2.1
			©198	32-202	20 Innov	yze				

DRET CC	onsulti	ng En	ginee	rs							Pag	e 2
Ormond	House				K	ishoge						
Upper C	Ormond	Quay			S	ite 3					~	-
Dublin	7				F	oul Catchr	nent A	1			Mi	cro
Date 21/02/2025 Designed by Darren Richardson												
File 250127 Kishoge Site3 Dr Checked by Dieter Bester									DI	ainago		
Innovyz	ze				N	etwork 202	20.1.3	}				
PN	Length (m)		-			Base Flow (l/s)				Section	Туре	Auto Design
	-	(m)	(1:X)	(ha)		Flow (l/s)	(mm)	SECT	(mm)	Section Pipe/Co		
4.000	(m)	(m) 0.352	(1:X) 199.8	(ha) 0.000	14	Flow (1/s) 0.0	(mm)	SECT О	(mm) 225		nduit	Design
4.000	(m) 70.344	(m) 0.352 0.309	(1:X) 199.8 200.0	(ha) 0.000 0.000	14	Flow (1/s) 0.0 0.0	(mm) 1.500	SECT 0	(mm) 225 225	Pipe/Co	nduit nduit	Design
4.000 1.008 1.009	(m) 70.344 61.806	(m) 0.352 0.309 0.280	(1:X) 199.8 200.0 200.0	(ha) 0.000 0.000 0.000	14 10 9	Flow (1/s) 0.0 0.0 0.0	(mm) 1.500 1.500	SECT 0 0	(mm) 225 225 225	Pipe/Co Pipe/Co	nduit nduit nduit	Design
4.000 1.008 1.009 5.000	(m) 70.344 61.806 56.002	(m) 0.352 0.309 0.280 0.339	(1:X) 199.8 200.0 200.0 100.1	(ha) 0.000 0.000 0.000	14 10 9 5	Flow (1/s) 0.0 0.0 0.0 0.0	(mm) 1.500 1.500 1.500	SECT 0 0 0 0	(mm) 225 225 225 225	Pipe/Co Pipe/Co Pipe/Co	nduit nduit nduit nduit	Design

Network Results Table

PN	US/IL (m)		Σ Base Flow (l/s)		Add Flow (l/s)	-	P.Vel (m/s)		-	Flow (l/s)
4.000	53.580	0.000	0.0	14	0.0	18	0.27	0.81	32.2	0.4
	53.228 52.919	0.000	0.0	100 109	0.0	45 47	0.50 0.51	0.81 0.81	32.2 32.2	2.8 3.1
5.000	52.978	0.000	0.0	5	0.0	9	0.24	1.15	45.6	0.1
	52.639 52.433	0.000	0.0	114 114	0.0	48 48	0.52 0.52	0.81 0.81	32.2 32.2	3.2 3.2

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment A	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)
1.000	0	225	FA12	57.400	54.336	2.839	Open Manhole	1200
1.001	0	225	FA11	57.100	54.201	2.674	Open Manhole	1200
1.002	0	225	FA10	56.705	54.118	2.362	Open Manhole	1200
2.000	0	225	FA9-1	56.985	54.169	2.591	Open Manhole	1200
1.003	0	225	FA9	56.591	54.050	2.316	Open Manhole	1200
3.000	0	225	FA8-1	56.330	53.983	2.122	Open Manhole	1200
1.004	0	225	FA8	56.374	53.879	2.270	Open Manhole	1200
1.005	0	225	FA7	56.742	53.718	2.799	Open Manhole	1200
1.006	0	225	FA6	56.968	53.616	3.127	Open Manhole	1200
1.007	0	225	FA5	57.054	53.587	3.242	Open Manhole	1200
4.000	0	225	FA4-1	57.184	53.580	3.379	Open Manhole	1200
1.008	0	225	FA4	56.681	53.228	3.228	Open Manhole	1200
1.009	0	225	FA3	56.415	52.919	3.271	Open Manhole	1200
5.000	0	225	FA2-1	56.023	52.978	2.820	Open Manhole	1200

PN	-	Slope (1:X)			I.Level (m)	-	MH Connection	MH DIAM., L*W (mm)
1.000	27.076	200.6	FA11	57.100	54.201	2.674	Open Manhole	1200
1.001	16.551	199.4	FA10	56.705	54.118	2.362	Open Manhole	1200
1.002	13.699	201.5	FA9	56.591	54.050	2.316	Open Manhole	1200
2.000	23.897	200.8	FA9	56.591	54.050	2.316	Open Manhole	1200
1.003	34.114	199.5	FA8	56.374	53.879	2.270	Open Manhole	1200
3.000	20.820	200.2	FA8	56.374	53.879	2.270	Open Manhole	1200
1.004	32.105	199.4	FA7	56.742	53.718	2.799	Open Manhole	1200
	20.392						Open Manhole	
1.006	5.857	202.0	FA5	57.054	53.587	3.242	Open Manhole	1200
1.007	71.816	200.0	FA4	56.681	53.228	3.228	Open Manhole	1200
4.000	70.344	199.8	FA4	56.681	53.228	3.228	Open Manhole	1200
1.008	61.806	200.0	FA3	56.415	52.919	3.271	Open Manhole	1200
1.009	56.002	200.0	FA2	56.014	52.639	3.150	Open Manhole	1200
5.000	33.919	100.1	FA2	56.014	52.639	3.150	Open Manhole	1200
				©1982	-2020 I	innovyze	5	

DBFL Consulting Engineers	Page 4	
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment A	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainage
Innovyze	Network 2020.1.3	
PIPELIN	<u>E SCHEDULES for FS1</u>	

<u>Upstream Manhole</u>

PN	-	Diam (mm)	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.010 1.011	-	225 225				Open Manhole Open Manhole	1200 1200
			Dow	nstream	Manhol	<u>.e</u>	

PN	Length (m)	Slope (1:X)	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
						Open Manhole Open Manhole	1200 0

DBFL Consulting Engineers	Page 5
Ormond House	Kishoge
Upper Ormond Quay	Site 3
Dublin 7	Foul Catchment A Micro
Date 21/02/2025	Designed by Darren Bighardson
File 250127 Kishoge Site3 Dr	. Checked by Dieter Bester
Innovyze	Network 2020.1.3
<u>Ar</u>	<u>ea Summary for FS1</u>
Pip	-
Numb	er Area (ha) (ha)
1.0	00 0.000 0.000
1.0	
1.0	
2.0 1.0	
3.0	
1.0	
1.0	
1.0	06 0.000 0.000
1.0	
4.0	
1.0	
1.0 5.0	
1.0	
1.0	
	Total Total
	iotai iotai
Outfall Outfall	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D,L W
	0.000 0.000 ng Outfall Details for FS1
Outfall Outfall	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)
Outfall Outfall Pipe Number Name 1.011 FA0	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)
Outfall Outfall Pipe Number Name 1.011 FA0 Simula Volumetric Runoff Coef: Areal Reduction Facto: Hot Start (mins)	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 55.630 52.409 0.000 0 0 Ation Criteria for FS1 f 0.750 Additional Flow - % of Total Flow 0.000 r 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficcient 0.800 0 0 Flow per Person per Day (1/per/day) 0.000 0 0.500 Run Time (mins) 60
Outfall Outfall Pipe Number Name 1.011 FAO Simula Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydro Number of Online Co	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 55.630 52.409 0.000 0 0 Ation Criteria for FS1 f 0.750 Additional Flow - % of Total Flow 0.000 r 1.000 MADD Factor * 10m ³ /ha Storage 2.000 0 Inlet Coefficcient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0 0.500 Run Time (mins) 60
Outfall Outfall Pipe Number Name 1.011 FAO Simula Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydro Number of Online Co	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) 55.630 52.409 0.000 0 0 Ation Criteria for FS1 f 0.750 Additional Flow - % of Total Flow 0.000 r 1.000 MADD Factor * 10m ³ /ha Storage 2.000 0 Inlet Coefficient 0.800 0 0 Flow per Person per Day (1/per/day) 0.000 0 0.500 Run Time (mins) 60 0 0.000 Output Interval (mins) 1 ographs 0 Number of Storage Structures 0 ontrols 0 Number of Time/Area Diagrams 0
Outfall Outfall Pipe Number Name 1.011 FAO Simula Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydro Number of Online Co	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D.L W (m) (m) I. Level (mm) (mm) (m) 55.630 52.409 0.000 0 0 Ation Criteria for FS1 f 0.750 Additional Flow - % of Total Flow 0.000 r 1.000 MADD Factor * 10m³/ha Storage 2.000 0 0 Inlet Coefficient 0.800 0 0 Flow per Person per Day (l/per/day) 0.000 0 0.000 Output Interval (mins) 1 ographs 0 Number of Storage Structures 0 ontrols 0 Number of Real Time Controls 0 etic Rainfall Details
Outfall Outfall Pipe Number Name 1.011 FAO LOUIMETRIC RUNOFF COEFF Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydro Number of Offline Co Number of Offline Co Synth Rainfall Model Return Period (years)	0.000 0.000 ng Outfall Details for FS1 C. Level I. Level Min D.L W (m) (m) I. Level (mm) (mm) (m) 55.630 52.409 0.000 0 0 Ation Criteria for FS1 f 0.750 Additional Flow - % of Total Flow 0.000 r 1.000 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficcient 0.800 0 Flow per Person per Day (l/per/day) 0.000 0 0.500 Run Time (mins) 60 0 0.000 Output Interval (mins) 1 ographs 0 Number of Storage Structures 0 mtrols 0 Number of Real Time Controls 0 etic Rainfall Details

DBFL Consulting Engineers							
Ormond House	Kishoge						
Upper Ormond Quay	Site 3						
Dublin 7	Foul Catchment B1	Micro					
Date 21/02/2025	Designed by Darren Richardson	Drainage					
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainage					
Innovyze	Network 2020.1.3						

FOUL SEWERAGE DESIGN

Design Criteria for FS2

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)0Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.200Flow Per Person (1/per/day)150.00Maximum Backdrop Height (m)1.500Persons per House2.70Min Design Depth for Optimisation (m)1.200Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor6.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for FS2

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	27.761	0.139	199.7	0.000	3	0.0	1.500	0	225	Pipe/Conduit	a
1.001	51.254	0.256	200.2	0.000	4	0.0	1.500	0	225	Pipe/Conduit	ě
1.002	26.716	0.134	199.4	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ě
1.003	5.722	0.029	197.3	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ě
1.004	4.118	0.021	196.1	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ē
1.005	9.749	0.049	199.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ē
1.006	11.536	0.058	198.9	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ē
1.007	24.831	0.124	200.3	0.000	6	0.0	1.500	0	225	Pipe/Conduit	ē
1.008	27.247	0.136	200.3	0.000	4	0.0	1.500	0	225	Pipe/Conduit	ē
1.009	29.849	0.149	200.3	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ē
1.010	7.619	0.038	200.5	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ē
2.000	32.179	0.161	199.9	0.000	3	0.0	1.500	0	225	Pipe/Conduit	0
2.001	6.444	0.032	201.4	0.000	3	0.0	1.500	0	225	Pipe/Conduit	

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.000	56.337	0.000	0.0	3	0.0	9	0.16	0.81	32.2	0.1
1.001	56.198	0.000	0.0	7	0.0	13	0.22	0.81	32.2	0.2
1.002	55.942	0.000	0.0	10	0.0	15	0.24	0.81	32.3	0.3
1.003	55.808	0.000	0.0	13	0.0	17	0.26	0.82	32.4	0.4
1.004	55.779	0.000	0.0	16	0.0	19	0.28	0.82	32.5	0.5
1.005	55.758	0.000	0.0	16	0.0	19	0.28	0.81	32.3	0.5
1.006	55.709	0.000	0.0	19	0.0	20	0.30	0.81	32.3	0.5
1.007	55.651	0.000	0.0	25	0.0	23	0.32	0.81	32.2	0.7
1.008	55.527	0.000	0.0	29	0.0	25	0.34	0.81	32.2	0.8
1.009	55.391	0.000	0.0	32	0.0	26	0.35	0.81	32.2	0.9
1.010	55.242	0.000	0.0	32	0.0	26	0.35	0.81	32.2	0.9
	55.492	0.000	0.0	3	0.0	9	0.16	0.81	32.2	0.1
2.001	55.331	0.000	0.0	6	0.0	12	0.20	0.81	32.1	0.2
			©198	32-202	20 Innov	yze				

DBFL Consulting Engineers						
Ormond House	Kishoge					
Upper Ormond Quay	Site 3					
Dublin 7	Foul Catchment B1	Micro				
Date 21/02/2025	Designed by Darren Richardson	Drainage				
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainage				
Innovyze	Network 2020.1.3					

Network Design Table for FS2

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
2.002	2 19.099	0.095	201.0	0.000	3	0.0	1.500	0	225	Pipe/Conduit	•
	L 15.413				3		1.500	0		Pipe/Conduit	•
	2 40.415				4		1.500	0		Pipe/Conduit	0
1.013					3	0.0	1.500	0		Pipe/Conduit	0
1.014	4 52.483	0.262	200.3	0.000	8	0.0	1.500	0	225	Pipe/Conduit	0
		0 1 5 0	000 1		-		1 500		005		
	31.814				3		1.500	0		Pipe/Conduit	0
	L 51.109		199.6		3		1.500	0		Pipe/Conduit	0
3.002	2 58.150	0.291	199.8	0.000	3	0.0	1.500	0	225	Pipe/Conduit	0
1.01	5 71.565	0.358	199.9	0.000	12	0.0	1.500	0	225	Pipe/Conduit	•
4.000	48.841	0.244	200.2	0.000	16	0.0	1.500	0	225	Pipe/Conduit	0
4.001	L 33.637	0.168	200.2	0.000	12	0.0	1.500	0	225	Pipe/Conduit	ĕ
4.002	2 7.528	0.038	198.1	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ē
4.003	3 10.668	0.053	201.3	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ě
4.004	1 5.073	0.025	202.9	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ě
4.005	5 18.823	0.094	200.2	0.000	2	0.0	1.500	0	225	Pipe/Conduit	ě
											-
1.010	5 18.118	0.091	199.1	0.000	0	0.0	1.500	0	225	Pipe/Conduit	0
1.01	9.684	0.048	201.8	0.000	2	0.0	1.500	0	225	Pipe/Conduit	ē

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse I	Add Flow (1/s)	-	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
2.002	55.299	0.000	0.0	9	0.0	15	0.23	0.81	32.1	0.3
	55.204	0.000	0.0	44	0.0	30	0.39	0.81	32.2	1.2
	55.127 54.925	0.000 0.000	0.0	48 51	0.0 0.0	32 33	0.40 0.40	0.81 0.81	32.2 32.1	1.4 1.4
1.014	54.889	0.000	0.0	59	0.0	35	0.42	0.81	32.2	1.7
	55.333	0.000	0.0	3	0.0	9	0.16	0.81	32.2	0.1
	55.174 54.918	0.000 0.000	0.0	6 9	0.0 0.0	12 15	0.20 0.23	0.81 0.81	32.2 32.2	0.2 0.3
1.015	54.627	0.000	0.0	80	0.0	40	0.46	0.81	32.2	2.3
	54.889 54.645	0.000	0.0	16 28	0.0	19 25	0.28	0.81 0.81	32.2 32.2	0.5
	54.477	0.000	0.0	28	0.0	25	0.34	0.81	32.2	0.8
	54.439	0.000	0.0	28	0.0	25	0.33 0.34	0.81	32.1	0.8
	54.386 54.361	0.000	0.0	31 33	0.0	26 27	0.34	0.80 0.81	32.0 32.2	0.9 0.9
1.016	54.269	0.000	0.0	113	0.0	48	0.52	0.81	32.3	3.2
1.017	54.178	0.000	0.0	115	0.0	48	0.52	0.81	32.1	3.2
			©198	82-202) Innov	yze				

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B1	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainage
Innovyze	Network 2020.1.3	·

Network Design Table for FS2

PN	Length (m)		Slope (1:X)		Houses	ise (l/s)		HYD SECT		Section Type	Auto Design
1.018	52.896	0.264	200.4	0.000	17	0.0	1.500			Pipe/Conduit	
1.019	7.946	0.040	198.7	0.000	1	0.0	1.500	0	225	Pipe/Conduit	8
1.020	20.357	0.102	199.6	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ē

<u>Network Results Table</u>

PN	•					Add Flow (1/s)	-			-		
1.018	54.130	0.000	0.0	1	132	0.0	52	0.54	0.81	32.2	3.7	
1.019	53.866	0.000	0.0	1	133	0.0	52	0.54	0.81	32.3	3.7	
1.020	53.826	0.000	0.0	1	133	0.0	52	0.54	0.81	32.2	3.7	

DBFL Consulting Engineers		Page 4
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B1	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamaye
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for FS2

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	FB21	57.300	56.337	0.738	Open Manhole	1200
1.001	0	225	FB20	57.300	56.198	0.877	Open Manhole	1200
1.002	0	225	FB19	57.694	55.942	1.527	Open Manhole	1200
1.003	0	225	FB18	57.171	55.808	1.138	Open Manhole	1200
1.004	0	225	FB17	57.030	55.779	1.026	Open Manhole	1200
1.005	0	225	FB16	57.003	55.758	1.020	Open Manhole	1200
1.006	0	225	FB15	57.100	55.709	1.166	Open Manhole	1200
1.007	0	225	FB14	57.109	55.651	1.233	Open Manhole	1200
1.008	0	225	FB13	57.073	55.527	1.321	Open Manhole	1200
1.009	0	225	FB12	57.122	55.391	1.506	Open Manhole	1200
1.010	0	225	FB11	57.100	55.242	1.633	Open Manhole	1200
2.000	0	225	FB10-3	56.899	55.492	1.182	Open Manhole	1200
2.001	0	225	FB10-2	56.987	55.331	1.431	Open Manhole	1200
2.002	0	225	FB10-1	57.029	55.299	1.505	Open Manhole	1200
1.011	0	225	FB10	57.090	55.204	1.661	Open Manhole	1200
1.012	0	225	FB9	57.028	55.127	1.676	Open Manhole	1200
1.013	0	225	FB8	57.254	54.925	2.104	Open Manhole	1200
1.014	0	225	FB7	57.305	54.889	2.191	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	27.761	199.7	FB20	57.300	56.198	0.877	Open Manhole	1200
1.001	51.254	200.2	FB19	57.694	55.942	1.527	Open Manhole	1200
1.002	26.716	199.4	FB18	57.171	55.808	1.138	Open Manhole	1200
1.003	5.722	197.3	FB17	57.030	55.779	1.026	Open Manhole	1200
1.004	4.118	196.1	FB16	57.003	55.758	1.020	Open Manhole	1200
1.005	9.749	199.0	FB15	57.100	55.709	1.166	Open Manhole	1200
1.006	11.536	198.9	FB14	57.109	55.651	1.233	Open Manhole	1200
1.007	24.831	200.3	FB13	57.073	55.527	1.321	Open Manhole	1200
1.008	27.247	200.3	FB12	57.122	55.391	1.506	Open Manhole	1200
1.009	29.849	200.3	FB11	57.100	55.242	1.633	Open Manhole	1200
1.010	7.619	200.5	FB10	57.090	55.204	1.661	Open Manhole	1200
2.000	32.179	199.9	FB10-2	56.987	55.331	1.431	Open Manhole	1200
2.001	6.444	201.4	FB10-1	57.029	55.299		Open Manhole	1200
2.002	19.099	201.0	FB10	57.090	55.204		Open Manhole	1200
1 011	15.413	200.2	FB9	57.028	55.127	1 676	Open Manhole	1200
	40.415		FB9	57.254	54.925		Open Manhole	1200
	7.244		гьо FB7	57.305	54.889		Open Manhole	1200
	52.483		FB6	57.250	54.627		Open Manhole	1200
1.014	JZ.40J	200.3	гDО	57.250	54.027	2.390	open Mannore	1200
				©1982-	2020 Ir	nnovyze		

DBFL Consulting Engineers		Page 5
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B1	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for FS2

<u>Upstream Manhole</u>

PN	-	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
3.000	0	225	FB6-3	56.808	55.333	1.250	Open Manhole	1200
3.001	0	225	FB6-2	56.497	55.174	1.098	Open Manhole	1200
3.002	0	225	FB6-1	56.843	54.918	1.700	Open Manhole	1200
1.015	0	225	FB6	57.250	54.627	2.398	Open Manhole	1200
4.000	0	225	FB5-6	58.000	54.889	2.886	Open Manhole	1200
4.001	0	225	FB5-5	58.145	54.645	3.275	Open Manhole	1200
4.002	0	225	FB5-4	58.110	54.477	3.408	Open Manhole	1200
4.003	0	225	FB5-3	58.113	54.439	3.449	Open Manhole	1200
4.004	0	225	FB5-2	58.086	54.386	3.475	Open Manhole	1200
4.005	0	225	FB5-1	58.038	54.361	3.452	Open Manhole	1200
1.016	0	225	FB5	57.842	54.269	3.348	Open Manhole	1200
1.017	0	225	FB4	58.028	54.178	3.625	Open Manhole	1200
1.018	0	225	FB3	58.119	54.130	3.764	Open Manhole	1200
1.019	0	225	FB2	57.954	53.866	3.863	Open Manhole	1200
1.020	0	225	FB1	57.968	53.826	3.917	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
3.000	31.814	200.1	FB6-2	56.497	55.174	1.098	Open Manhole	1200
3.001	51.109	199.6	FB6-1	56.843	54.918	1.700	Open Manhole	1200
3.002	58.150	199.8	FB6	57.250	54.627	2.398	Open Manhole	1200
1.015	71.565	199.9	FB5	57.842	54.269	3.348	Open Manhole	1200
4.000	48.841	200.2	FB5-5	58.145	54.645	3.275	Open Manhole	1200
4.001	33.637	200.2	FB5-4	58.110	54.477	3.408	Open Manhole	1200
4.002	7.528	198.1	FB5-3	58.113	54.439	3.449	Open Manhole	1200
4.003	10.668	201.3	FB5-2	58.086	54.386	3.475	Open Manhole	1200
4.004	5.073	202.9	FB5-1	58.038	54.361	3.452	Open Manhole	1200
4.005	18.823	200.2	FB5	57.842	54.267	3.350	Open Manhole	1200
1.016	18.118	199.1	FB4	58.028	54.178	3.625	Open Manhole	1200
1.017	9.684	201.8	FB3	58.119	54.130	3.764	Open Manhole	1200
1.018	52.896	200.4	FB2	57.954	53.866	3.863	Open Manhole	1200
1.019	7.946	198.7	FB1	57.968	53.826	3.917	Open Manhole	1200
1.020	20.357	199.6	FB0	57.836	53.724	3.887	Open Manhole	700

n Richardson Bester
n Richardson
n Richardson
n Richardson
F02
<u>or FS2</u>
in D,L W
evel (mm) (mm) n)
.000 700 0
i e

BFL Consulting Engineers		Page 7
rmond House	Kishoge	
pper Ormond Quay	Site 3	
ublin 7	Foul Catchment B1	Micro
ate 21/02/2025	Designed by Darren Ricl	nardson Designed
ile 250127 Kishoge Site3 Dr		
nnovyze	Network 2020.1.3	
inio vy 20	Neework Edeo.1.5	
Simula	tion Criteria for FS2	
Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global)	0 Flow per Person per Da	m ³ /ha Storage 2.000 c Coeffiecient 0.800 y (1/per/day) 0.000 nn Time (mins) 60
Number of Online Co.	graphs 0 Number of Storage St ntrols 0 Number of Time/Area 0 ntrols 0 Number of Real Time 0	Diagrams O
Synthe	etic Rainfall Details	
Rainfall Model	FSR Prof	ile Type Summer
Return Period (years)	100 Cv	(Summer) 0.750
Region Scot	land and Ireland Cv	(Winter) 0.840
M5-60 (mm)	16.700 Storm Duratic	n (mins) 30
Ratio R	0.275	

©1982-2020 Innovyze

DBFL Consulting Engineers		Page 1
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B2	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

FOUL SEWERAGE DESIGN

Design Criteria for FS3

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)0Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.200Flow Per Person (1/per/day)150.00Maximum Backdrop Height (m)1.500Persons per House2.70Min Design Depth for Optimisation (m)1.200Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor6.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for FS3

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000 1.001 1.002	9.824	0.049	200.2 200.5 205.5	0.000	6 6 6		0.0	1.500 1.500 1.500	0 0 0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0
	36.136				9			1.500	0		Pipe/Conduit	0 0
	27.948				6			1.500	0		Pipe/Conduit	۵
	17.955				6			1.500	0		Pipe/Conduit	0
1.005	8.856	0.044	201.3	0.000	7		0.0	1.500	0	225	Pipe/Conduit	8
1.006	8.143	0.041	198.6	0.000	3		0.0	1.500	0	225	Pipe/Conduit	0
1.007	72.248	0.361	200.1	0.000	6		0.0	1.500	0	225	Pipe/Conduit	ē
3.000	53.502	0.268	199.6	0.000	5		0.0	1.500	0	225	Pipe/Conduit	8

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	-		Vel (m/s)	Cap (1/s)	Flow (l/s)
1.000	58.018	0.000	0.0	6	0.0	12	0.20	0.81	32.2	0.2
1.001	57.784	0.000	0.0	12	0.0	17	0.26	0.81	32.2	0.3
1.002	57.735	0.000	0.0	18	0.0	20	0.29	0.80	31.8	0.5
1.003	57.717	0.000	0.0	27	0.0	24	0.33	0.81	32.2	0.8
2.000	58.026	0.000	0.0	6	0.0	12	0.20	0.81	32.2	0.2
1.004	57.536	0.000	0.0	39	0.0	29	0.37	0.81	32.3	1.1
1.005	57.446	0.000	0.0	46	0.0	31	0.39	0.81	32.1	1.3
1.006	57.402	0.000	0.0	49	0.0	32	0.40	0.81	32.3	1.4
1.007	57.361	0.000	0.0	55	0.0	34	0.41	0.81	32.2	1.5
3.000	57.268	0.000	0.0	5	0.0	11	0.19	0.81	32.2	0.1
			©198	32-202	20 Innov	yze				

DBFL Co	nsul	Lting	Eng	ginee	ers								Page	2
Ormond	Hous	se					Kisho	oge						
Upper O	rmor	nd Qu	ay				Site	3		4				
Dublin							Foul	Catchme	ent B2				Mice	
Date 21	/02/	/2025					Desig	gned by	Darre	n Ric	hards	on	Deai	o nage
File 25	0127	7_Kis	hoge	e_Sit	.e3_D	r	Checl	ked by 1	Dieter	Best	er		Uldi	naye
Innovyz	е						Netwo	ork 202	0.1.3					
					<u>Net</u>	work	Desig	<u>n Table</u>	for E	<u>rs3</u>				
PN	Leng (m)							Base w (l/s)		HYD D SECT (n		ction T		Auto Auto
1.008	71.9	00 0.3	360	199.7	0.00	0	0	0.0	1.500	0 2	25 Pip	be/Cond	uit	A
								sults 1			-			•
	PN					Base (1/s)		Add Flow (1/s)						
1	.008	57.00	0 0	0.000		0.0	60	0.0	35	0.43	0.81	32.2	1.7	
						01.0								
						©198	32-202	0 Innov	yze					

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B2	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for FS3

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	FC9	59.400	58.018	1.157	Open Manhole	1200
1.001	0	225	FC8	59.300	57.784	1.291	Open Manhole	1200
1.002	0	225	FC7	59.400	57.735	1.440	Open Manhole	1200
1.003	0	225	FC6	59.500	57.717	1.558	Open Manhole	1200
2.000	0	225	FC5-1	59.980	58.026	1.729	Open Manhole	1200
1.004	0	225	FC5	59.850	57.536	2.089	Open Manhole	1200
1.005	0	225	FC4	59.670	57.446	1.999	Open Manhole	1200
1.006	0	225	FC3	59.591	57.402	1.964	Open Manhole	1200
1.007	0	225	FC2	59.515	57.361	1.929	Open Manhole	1200
3.000	0	225	FC1-1	59.679	57.268	2.186	Open Manhole	1200
1.008	0	225	FC1	59.520	57.000	2.295	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	46.847	200.2	FC8	59.300	57.784	1.291	Open Manhole	1200
1.001	9.824	200.5	FC7	59.400	57.735	1.440	Open Manhole	1200
1.002	3.699	205.5	FC6	59.500	57.717	1.558	Open Manhole	1200
1.003	36.136	199.6	FC5	59.850	57.536	2.089	Open Manhole	1200
2.000	27.948	199.6	FC5	59.850	57.886	1.739	Open Manhole	1200
1.004	17.955	199.5	FC4	59.670	57.446	1.999	Open Manhole	1200
1.005	8.856	201.3	FC3	59.591	57.402	1.964	Open Manhole	1200
1.006	8.143	198.6	FC2	59.515	57.361	1.929	Open Manhole	1200
1.007	72.248	200.1	FC1	59.520	57.000	2.295	Open Manhole	1200
3.000	53.502	199.6	FC1	59.520	57.000	2.295	Open Manhole	1200
1.008	71.900	199.7	FC0	59.577	56.640	2.712	Open Manhole	0

DBFL Consulting Engineers		Page 4
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	°
Dublin 7	Foul Catchment B2	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamage
Innovyze	Network 2020.1.3	·
	Ourse for ECC	

Area Summary for FS3

Pipe Number	Gross Area (ha)	Pipe Total (ha)
1.000	0.000	0.000
1.001	0.000	0.000
1.002	0.000	0.000
1.003	0.000	0.000
2.000	0.000	0.000
1.004	0.000	0.000
1.005	0.000	0.000
1.006	0.000	0.000
1.007	0.000	0.000
3.000	0.000	0.000
1.008	0.000	0.000
	Total	Total
	0.000	0.000

Free Flowing Outfall Details for FS3

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

1.008 FC0 59.577 56.640 0.000 0 0

Simulation Criteria for FS3

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (l/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (l/s)0.000Output Interval (mins)1

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	100	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	16.700	Storm Duration (mins) 30
Ratio R	0.275	

©1982-2020 Innovyze

rmond House		nginee	ers								Page	1
					Kishoq							
pper Ormond	l Quay				Site 3							-
ublin 7						Catchme					Micr	0
ate 21/02/2					-	ned by				on	Drai	nag
'ile 250127_	Kisho	ge_Sit	ce3_Dr			ed by D		Beste	er		Brai	nacj
nnovyze]	Netwo	rk 2020	.1.3					
			_			AGE DES						
			De	<u>sign</u>	Crite	eria fo	<u>r FS4</u>					
		Pip	e Sizes	STAN	DARD M	anhole S	izes S	TANDAR	D			
Industria Flow Per	al Pea Persor Perso Domes	n (l/pe ons per stic (l	Factor	2.7 0.0	0 0 0 Min 0 M	Mi	nimum ximum epth f or Aut	o Desig	op Heig op Heig imisat: gn only	ght (m) ght (m) ion (m) g (m/s)	0.20 1.50 1.20 0.7	0 0 5
			De	signed	d with	Level So	offits					
			<u>Netwo</u>	ork D	esign	Table	for F	'S4				
-		-	Area	House		ase			IA Sec	tion T		
(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm) S	SECT (m	m)		De	sign
2 000 20 501	1 0.124	318.7	0.000		0	0.0 1	.500	o 2	25 Pip	e/Cond	luit	0
2.000 39.521 2.001 24.919	9 0.206	121.0	0.000		0	0.0 1	.500	o 2	25 Pip			8
	9 0.206	121.0				0.0 1 sults T		0 2	25 Pip			•
2.001 24.919		Σ Area	<u>N</u>	etwoi se Σ	rk Res		<u>able</u>	P.Vel	-	e/Cond Cap	luit Flow	•
2.001 24.919	JS/IL : (m) 5.375	Σ Area (ha)	<u>Ν</u> Σ Bas	etwoi se Σ	rk Res	dd Flow	able P.Dep	P.Vel	Vel	Cap (1/s) 25.5	luit Flow	•
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	•
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm)	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm) 0	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm) 0	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm) 0	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠
2.001 24.919 PN C 2.000 5	JS/IL : (m) 5.375	Σ Area (ha) 0.000	<u>Ν</u> Σ Bas	<u>etwor</u> se Σ L/s) 0.0	<u>rk Res</u> E Hse A O	ults T dd Flow (l/s) 0.0	<u>able</u> P.Dep (mm) 0	P.Vel (m/s) 0.00	Vel (m/s) 0.64	Cap (1/s) 25.5	Flow (1/s) 0.0	٠

©1982-2020 Innovyze

DBFL Consulting Engineers		Page 2
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B3	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainage
Innovyze	Network 2020.1.3	·

PIPELINE SCHEDULES for FS4

<u>Upstream Manhole</u>

PN	-	Diam (mm)	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
2.000 2.001						Open Manhole Open Manhole	1200 1200

Downstream Manhole

PN	Length (m)	-		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
2.000	39.521	318.7	FD1	59.283	55.251	3.807	Open Manhole	1200
2.001	24.919	121.0	FD0	59.523	55.045	4.253	Open Manhole	0

		Page 3
Drmond House	Kishoge	
Jpper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B3	- Micro
Date 21/02/2025	Designed by Darren Richardson	
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Drainago
Innovyze	Network 2020.1.3	L
Area	a Summary for FS4	
Pipe	Gross Pipe Total	
	r Area (ha) (ha)	
2.000 2.001		
Free Flowing	<u>q Outfall Details for FS4</u>	
	C. Level I. Level Min D,L W	
Pipe Number Name		
2.001 FD0	59.523 55.045 0.000 0 0	
Simulat	<u>tion Criteria for FS4</u>	
Number of Online Con	0 Flow per Person per Day (l/per/o 0.500 Run Time (mi 0.000 Output Interval (mi rraphs 0 Number of Storage Structures 0 trols 0 Number of Time/Area Diagrams 0	day) 0.000 ins) 60 ins) 1
	trols 0 Number of Real Time Controls 0	
<u>Syntne</u>	<u>tic Rainfall Details</u>	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R	FSR Profile Type 3 100 Cv (Summer) and and Ireland Cv (Winter) 16.700 Storm Duration (mins) 0.275	0.750 0.840

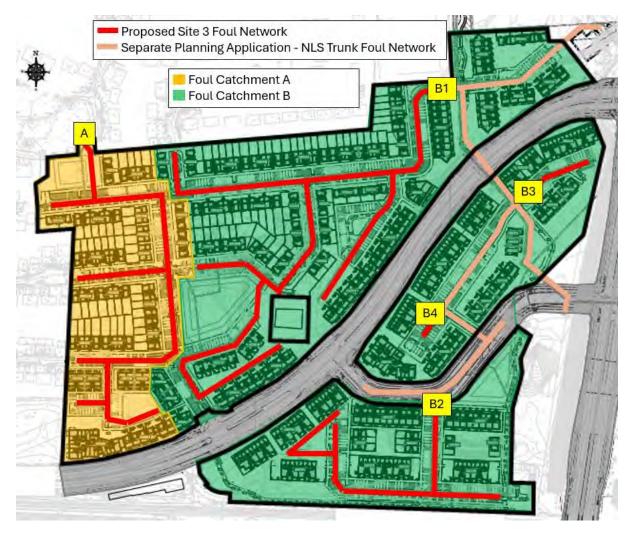
)BFL Consulting Engineers	Page 1
Ormond House	Kishoge
Jpper Ormond Quay	Site 3
Oublin 7	Foul Catchment B4
Date 21/02/2025	Designed by Darren Richardson
Tile 250127_Kishoge_Site3_Dr	checked by Dieter Bester
innovyze	Network 2020.1.3
<u>FOU.</u>	L SEWERAGE DESIGN
Desig	n Criteria for FS5
Pipe Sizes ST	ANDARD Manhole Sizes STANDARD
Industrial Peak Flow Factor 0 Flow Per Person (l/per/day) 222 Persons per House 3 Domestic (l/s/ha) 0 Domestic Peak Flow Factor 6	00 Min Design Depth for Optimisation (m) 1.200 00 Min Vel for Auto Design only (m/s) 0.75 00 Min Slope for Optimisation (1:X) 500
Design	ned with Level Soffits
Network	Design Table for FS5
PN Length Fall Slope Area Hou (m) (m) (1:X) (ha)	ses Base k HYD DIA Section Type Auto Flow (l/s) (mm) SECT (mm) Design
1.000 19.041 0.087 218.9 0.000	0 0.0 1.500 o 225 Pipe/Conduit 🔒
Netw	work Results Table
<u>Netw</u> PN US/IL Σ Area Σ Base (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL Σ Area Σ Base (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL Σ Area Σ Base (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL Σ Area Σ Base (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)
PN US/IL ΣArea ΣBase (m) (ha) Flow (l/s)	Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow (l/s) (mm) (m/s) (m/s) (l/s) (l/s)

DBFL Consulting Engineers		Page 2
Ormond House	Kishoge	
Upper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B4	Micro
Date 21/02/2025	Designed by Darren Richardson	Drainage
File 250127_Kishoge_Site3_Dr	Checked by Dieter Bester	Diamaye
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for FS5

<u>Upstream Manhole</u>

PN	-	Diam (mm)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	225	FE1	59.139	56.714	2.200	Open Manhole	1200


Downstream Manhole

PN	2	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., (mm)	L*W
1.000	19.041	218.9	FEO	59.111	56.627	2.259	Open Manhole		0

©1982-2020 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House	Kishoge	
Jpper Ormond Quay	Site 3	
Dublin 7	Foul Catchment B4	— Micro
Date 21/02/2025	Designed by Darren Richardson	
File 250127_Kishoge_Site3_Dr	. Checked by Dieter Bester	Drainage
Innovyze	Network 2020.1.3	
Are	<u>ea Summary for FS5</u>	
Pipe Numbe	e Gross Pipe Total er Area (ha) (ha)	
1.00	0.000 0.000	
1.00	Total Total	
	0.000 0.000	
<u>Free Flowir</u>	ng Outfall Details for FS5	
Outfall Outfall	C. Level I. Level Min D,L W	
Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)	
1.000 FE0	59.111 56.627 0.000 0 0	
<u>Simula</u>	tion Criteria for FS5	
Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s) Number of Input Hydrod Number of Online Con		nins) 60 nins) 1 0 0
		0
<u>synthe</u>	<u>etic Rainfall Details</u>	
Rainfall Model Return Period (years) Region Scotl M5-60 (mm) Ratio R	FSR Profile Type 100 Cv (Summer) land and Ireland Cv (Winter) 16.700 Storm Duration (mins) 0.275	0.750 0.840

©1982-2020 Innovyze

Kishoge Site 3 – Foul Network Catchments & Outfalls

Appendix C : UISCE ÉIREANN CONFIRMATION OF FEASIBILITY

CONFIRMATION OF FEASIBILITY

Dieter Bester

DBFL Ormond House Ormond Quay Upper Dublin D07 W704 **Uisce Éireann** Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

24 May 2024

Our Ref: CDS24003031 Pre-Connection Enquiry Clonburris, Dublin

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 609 unit(s) at Clonburris, Dublin, (the **Development**).

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection
 Feasible without infrastructure upgrade by
 Uisce Éireann
- The connection is feasible off the existing 400mm ID main and it should be a primary connection for the Development with a bulk meter and associated telemetry system installed on the line.
- The DMA mains must be looped to avoid dead ends and have a secondary connection via a closed valve.
- The existing value as shown in figure below must be opened to provide the adequate supply.
- Proposed and constructed Clonburiss SDZ infrastructure within the Development must be in line with Clonburiss Water Supply Master Plan approved by Uisce Éireann.

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a design activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

- Wastewater Connection Feasible Subject to upgrades
- 120 units of the Development may connect to the 525mm sewer as proposed by the Applicant. Clonburris Wastewater Master Plan has to be updated to reflect the above. The Developer may need to make a contribution to Esker wastewater pumping station (WWPS) upgrade. The WWPS is downstream of the 525mm sewer. At a connection application stage, the potential upgrade requirements will be reviewed, and upgrade contribution fee will be calculated.
- Proposed connections of the remaining units are to the proposed Northern Link Street (NLS) infrastructure as part of Clonburris SDZ. All relevant Clonburiss SDZ infrastructure (including PS and RM #3, NLS infrastructure), has to be in line with the approved Clonburris Master Plan, completed and connected to Uisce Éireann infrastructure prior the connection. The infrastructure will be delivered by Clonburris Infrastructure Ltd.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application <u>and be granted and sign</u> a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

- Section A What is important to know?
- Section B Details of Uisce Éireann's Network(s)

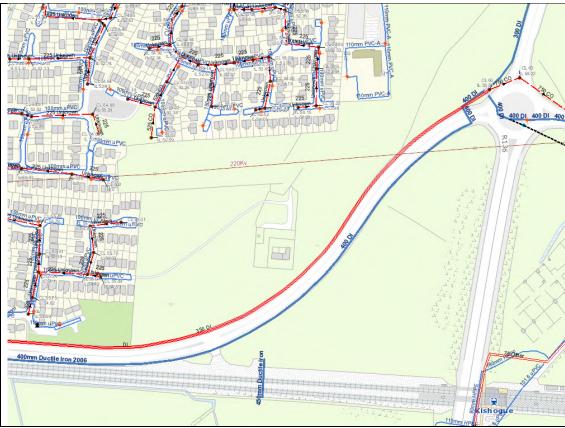
This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

() l

Dermot Phelan Connections Delivery Manager


Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	• The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	 Requests for maps showing Uisce Éireann's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Uisce Éireann</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u> **trade effluent is defined in the Local Government (Water
	Pollution) Act, 1977 (as amended)

Section B – Details of Uisce Éireann's Network(s)

The map included below outlines the current Uisce Éireann infrastructure adjacent the Development: To access Uisce Éireann Maps email datarequests@water.ie

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Uisce Éireann's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Uisce Éireann.

Whilst every care has been taken in respect of the information on Uisce Éireann's network(s), Uisce Éireann assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Uisce Éireann's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Uisce Éireann's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Appendix D : STAGE 1 ROAD SAFETY AUDIT

24261-01-001

PROPOSED RESIDENTIAL DEVELOPMENT, KISHOGE SITE 3, ADAMSTOWN AVENUE, KISHOGE, CO. DUBLIN

Road Safety Audit Stage 1

for

DBFL Consulting Engineers

JANUARY 2025

ROADPLAN CONSULTING

7, Ormonde Road Kilkenny. R95 N4FE

Tel: 056 7795800 info@roadplan.ie www.roadplan.ie

DOCUMENT CONTROL SHEET

Project Title	Residential Development at Adamstown Avenue, Kishoge, Co. Dublin
Project No.	24261-01
Client	DBFL Consulting Engineers
Document Title	Road Safety Audit Stage 1
Document No.	24261-01-001

Status	Author(s)	Reviewed By	Approved By	Issue Date
Draft 1	HC / GF	HC / GF	GF	14/1/2025
Final	HC / GF	HC / GF	GF	20/1/2025

TABLE OF CONTENTS

1.	INTRODUCTION	4			
2.	STAGE 1 AUDIT	5			
3.	AUDIT TEAM STATEMENT	. 17			
4.	SAFETY AUDIT FEEDBACK FORM	. 18			
AP	APPENDIX A				

1. INTRODUCTION

- 1.1 This report describes a Stage 1 Road Safety Audit carried out at the proposed residential development at Adamstown Avenue, Kishoge, Co. Dublin. . The audit was carried out on 13th January 2025 in the offices of Roadplan Consulting, Kilkenny.
- 1.2 The audit team members were as follows:
 - George Frisby, BE CEng MIEI Auditor Number GF51255
 - Harry Cullen, BE CEng MIEI Auditor Number HC1333178
- 1.3 Both audit team members visited the site on the 18th December 2024. The audit comprised of an examination of the drawings relating to the scheme supplied by DBFL Consulting Engineers and an examination of the site.
- 1.4 The speed limit on Adamstown Avenue is 60 km/h (see Figure 1 below), and the auditors assume that the speed limit on the new development will be 30km/h.

Figure 1 – Adamstown road speed limit at proposes development

- 1.5 This Stage 1 Audit has been carried out in accordance with the relevant sections of TII GE-STY-01024. The team has examined only those issues within the design relating to the road safety implications of the scheme and has therefore not examined or verified the compliance of the design to any other criteria.
- 1.6 All problems described in this report are considered by the audit team to require action in order to improve the safety of the scheme and minimise accident occurrence.
- 1.7 Appendix A contains copies of the audited drawing.

2. STAGE 1 AUDIT

2.1 **Problem:** Adamstown Avenue **Location:** At Junction A (the most westerly junction)

Adamstown Avenue is a 4-lane roadway, with a solid island in the centre. It connects the R136 on Grange Castle Road with Adamstown, over 2km to the west. All the development along this stretch of Adamstown Avenue is catered for by a service road off Adamstown Avenue. There is no direct access onto Adamstown Avenue on this 2.5km stretch of road.

This proposed development shows two main junctions off Adamstown Avenue plus a pedestrian crossing, and another junction off the R136 to service the development, highlighted in yellow boxes on Figure 2 below.

Figure 2- Three junctions serving the development.

An examination of Junction A (the most westerly junction) show that the minor road (serving Street 02) is a STOP controlled junction, the other two junctions (B and C) appear to be traffic light-controlled junctions.

No traffic data has been made available to the auditors, however more than half the proposed development will be served by Junction A, and if traffic backs up exiting the development at peak times it may lead to risk taking by motorists, leading to collisions and injuries.

Recommendation:

Review the projected traffic flows at this junction and the need for traffic light control on entering/exiting the development at Junction A, to ensure the junction will function as proposed at peak times.

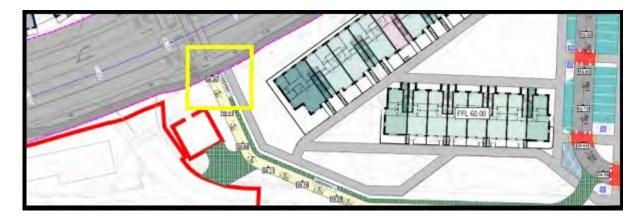
2.2 **Problem:** Adamstown Avenue

Location: Vulnerable Road User Movements at Junction A

Figure 3 below shows a proposal for a crossing for vulnerable road users at this junction. This is to cater for pedestrians exiting Street 02, and also for cyclists and other vulnerable road users using Greenway No. 1 to the south. This is a 4-lane highway with a solid median. Pedestrians may well have difficulty using an uncontrolled crossing given the width of the

road. There are no traffic control devices shown on the drawing, but the auditors are assuming it's a controlled crossing.

Depending on the traffic flow, pedestrians could easily be 'marooned' in the central island without any control devices.


Figure 3 – Junction A

Recommendation:

Provide for a controlled crossing for vulnerable road users at this location, including push button control on the median.

2.3 **Problem:** Lack of appropriate tactile **Location:** End of Greenways 1 at Junction A

Appropriate tactile warning does not appear to be provided at all locations where the proposed greenways running through the developments joins a shared route, see Figure 4 below. Lack of appropriate tactile could lead to collisions with injuries.

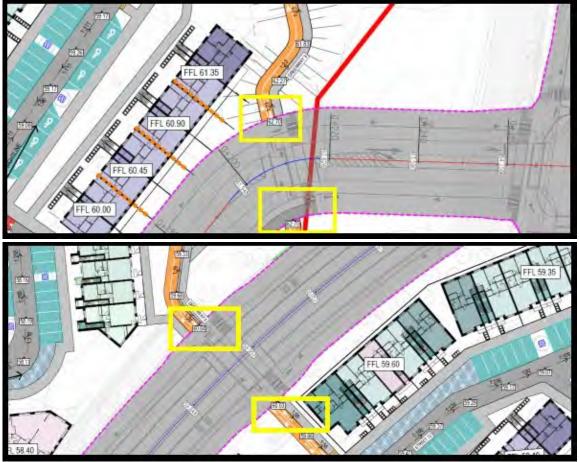


Figure 4 – Locations where Greenways joins a shared route

Recommendation:

Provide appropriate tactile paving at these locations.

2.4 **Problem:** No continuation of Greenway 1 into the development **Location:** At Junction A and onto Street No.02

Greenway 01, which is a two-way cycleway, extends along the southern boundary of the development. There is a crossing point at Junction A to the other side of the road, but there is no continuation of Greenway 01 into the development. See Figure 5 below.

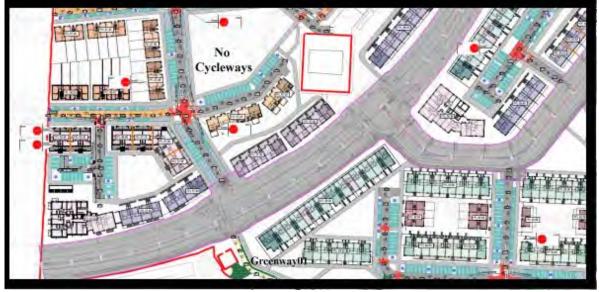


Figure 5– No continuation of Greenway01 and no cycleways in development

In fact, there are very few facilities for cyclists shown in the development, except for the various Greenways along the eastern side of the development and perhaps the Home Streets.

This lack of continuity may lead to conflict between cyclists and pedestrians on the footpaths, leading to collisions and injuries.

Recommendation:

Provide for continuity of cycleways throughout the development.

2.5 **Problem:** Autotrack Information **Location:** In the development

No Autotrack information for the movements of Refuse trucks and Fire Tenders has been provided on the drawings. The movements of these vehicles around the development needs to be carefully evaluated to ensure no overhangs on kerbs or green areas, to avoid interacting with pedestrians and children at play in the development, which could lead to collisions and injuries.

Recommendation:

Review movements of large vehicles by Autotrack through the development to ensure no overhangs onto footpaths and green areas.

2.6 **Problem: Refuse** Bin Storage areas for Apartments **Location:** In the development

There appear to a number of apartment buildings spread throughout the development. However, no location for Refuse Bin Storage areas appears to be identified on the drawings. See an example on Figure 6 below.

Figure 6 – No Refuse Bins shown for apartments

Refuse trucks will need easy access to bin storage areas to avoid interacting with pedestrian and children at play in the development, which could lead to collisions and injuries.

Recommendation:

Provide accessible locations for refuse bin storage areas

2.7 **Problem:** Number of Disabled drivers parking spaces **Location:** In the Development

While there are a number of designated parking areas provided for wheelchair users, current guidelines would suggest that 5% of all parking spaces should be made available for disable drivers. The number provided falls short of this, and a large number of the designated disabled parking spaces as grouped together, which means that other areas have a serious shortage of disabled spaces, see Figure 7 below.

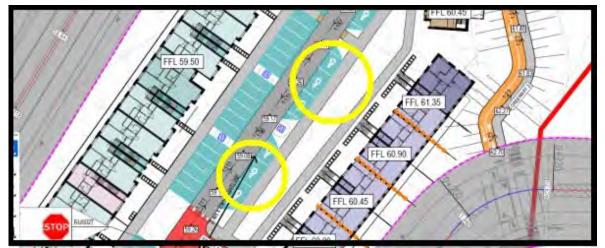


Figure 7 – Poor distribution of disabled parking spaces, and not 5% of total

Recommendation:

Review the allocation of designated parking areas for wheelchair users, to meet with current guidelines. These disabled parking places should be located close to the dwellings.

2.8 **Problem:** Parking for Disabled drivers **Location:** In the Development

There does not appear to be any dropped kerbs shown for disabled drivers parking places, see Figure 8 below. This can lead to falls and injuries for disabled drivers.

Figure 8 - No dropped kerbs shown at any disabled parking spaces in the development

Recommendation:

Provide facilities to standard for disabled parking spaces.

2.9 **Problem:** Parking spaces for Electric Vehicles **Location:** In the Development

There does not appear to be any charging points proposed for electric vehicles. The City Development Plan stipulates that all new residential developments with car parking facilities must be equipped to support EV charging. Current guidelines would suggest that all

developments should provide facilities for charging battery operated cars at a rate of up to 10% of the total car parking spaces.

Recommendation:

Provide the allocation of designated charging points for electric vehicles, to meet with current guidelines.

2.10 **Problem:** Parking near some Apartments **Location:** In the development

There does not appear to be any parking provided close to the apartments highlighted in Figure 9 below. This can lead to incidents, especially for disabled road users and pedestrians having to travel some distance to access their unit.

Figure 9 – No parking places close to units in the development

Recommendation:

Review the provision of parking for these units close to their destination.

2.11 **Problem:** Visibility Splays at Junctions **Location:** In the development

Visibility splays are proposed at all the junctions within the proposed development. However, the visibility splays are shown to encroach into parking bays at a number of junctions, see example in Figure 10 below. Vehicles parked in these parking spaces may restrict the proposed visibility at the adjacent junction. A lack of appropriate visibility may contribute to a collision at the junction.



Figure 10 – Parked vehicles within visibility splays

Recommendation:

Revise the layout where necessary to ensure that adequate visibility splays are provided are all junctions within the proposed development.

2.12 **Problem:** Rat Running from Junction B to Junction C **Location:** In the development

There is a possibility of Rat Running taking place from Junction B to Junction C and vice versa, to avoid the junction at the top of Adamstown Avenue. No measures appear to be present on the drawings to ameliorate this. This can lead to traffic congestion and risk taking, resulting in collisions and injuries.

Figure 11– Potential of Rat Running from Junctions B to C

Recommendation:

Review the link from Junction B to C to minimise the risk of Rat Running.

2.13 **Problem:** Visibility Splays at Pedestrian Crossings **Location:** In the development

Intervisibility between motorist approaching pedestrian crossings and pedestrians crossing pedestrian crossings may be restricted by vehicles parked in the adjacent car parking bays, see example in Figure 12 below. A lack of appropriate intervisibility at pedestrian crossings contribute to a pedestrian collision at these locations.

Figure 12 – Intervisibility at Pedestrian Crossings

Recommendation:

Revise the layout where necessary to ensure that adequate intervisibility is provided between motorist approaching pedestrian crossings and pedestrians crossing pedestrian crossings.

2.14 **Problem:** Bicycle Sheds

Location: In the development

There appear to be quite a number of apartment units spread throughout the development. However, no bicycle sheds or shelters have been identified on the drawings. This can lead to injuries for users and other residents as they attempt to carry their bikes into apartments.

Recommendation:

Review the provision of Bike Shelters for all apartment buildings

2.15 **Problem:** No pedestrian facilities at the junction off Road B to C **Location:** In the development

There are no pedestrian crossing facilities shown at this junction. See Figure 13 below. This could lead to collisions between pedestrian and motorists, leading to injuries.

Figure 13 – No pedestrian crossing facilities at junction

Recommendation:

Provide pedestrian crossing facilities at this junction.

2.16 **Problem:** No STOP sign shown at this junction **Location:** In the development

There is no STOP sign shown on the drawing for this junction. Other more minor junctions nearby all have STOP signs shown on the drawing. See Figure 14 below. If no STOP sign is shown at this junction it could lead to collisions with traffic on the main road, leading to injuries.

Figure 14 – No STOP sign at junction

Recommendation:

Provide STOP sign at this junction.

2.17 **Problem:** No STOP sign shown at this junction **Location:** In the development

There is no STOP sign shown on the drawing for this junction. Other more minor junctions nearby all have STOP signs shown on the drawing. See Figure 15 below.

If no STOP sign is shown at this junction it could lead to collisions with traffic on the main road, leading to injuries.

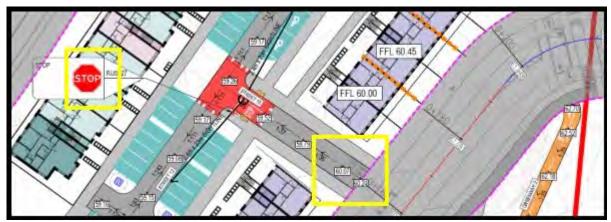


Figure 15 – No STOP sign at junction

Recommendation:

Provide STOP sign at this junction.

2.18 **Problem:** Road Curvature **Location:** In the development

The proposed horizontal curve radii at a number of locations appears to be low or nonexistent, see example in Figure 16 below. A lack of appropriate curve radii within the proposed development may lead to loss of control collisions at these locations.

Figure 16 – Horizontal curvature.

Recommendation:

Provide appropriate curve radii at all bends within the proposed development.

2.19 **Problem:** Some turning areas appear quite short **Location:** In the development

Some of the turning areas at the end of minor roads appear quite short, considering that refuse trucks and fire tenders may need to use them to complete a turning movement, see example in Figure 17.

If these large vehicles have difficultly turning, they may mount footpath or grass verges and risk striking pedestrian or children, resulting in injuries.

Figure 17 - Some turning areas appear quite short

Recommendation:

Ensure adequate space is made available for these larger vehicles to turn in the development, without recourse to footpaths or grass areas.

2.20 **Problem:** Tactile Paving missing **Location:** In the development

Tactile paving does not extend across the full width of the crossing in some shared spaces while tactile paving is not provided where footpaths join shared spaces in other locations, see example in Figure 18. A lack of appropriate tactile paving may contribute to a pedestrian collision in these locations.

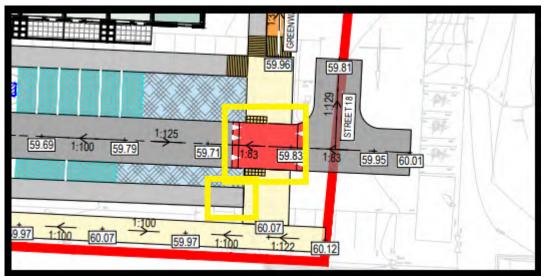


Figure 18 – Tactile paving missing

Recommendation:

Ensure adequate tactile paving is provided at all locations within the proposed development.

3. AUDIT TEAM STATEMENT

n

3.1 We certify that we have examined the drawings listed in Appendix A and have inspected the site. This examination has been carried out with the sole purpose of identifying any features of the scheme that could be removed or modified to improve the safety of the scheme.

Signed	George Frisby
Date13 th January 2025	
Signed	Harry Cullen
Date13 th January 2025	

4. SAFETY AUDIT FEEDBACK FORM

Scheme: Residential Development at Adamstown Avenue, Kishoge, Dublin

Document Number: 24261-01-RP-001

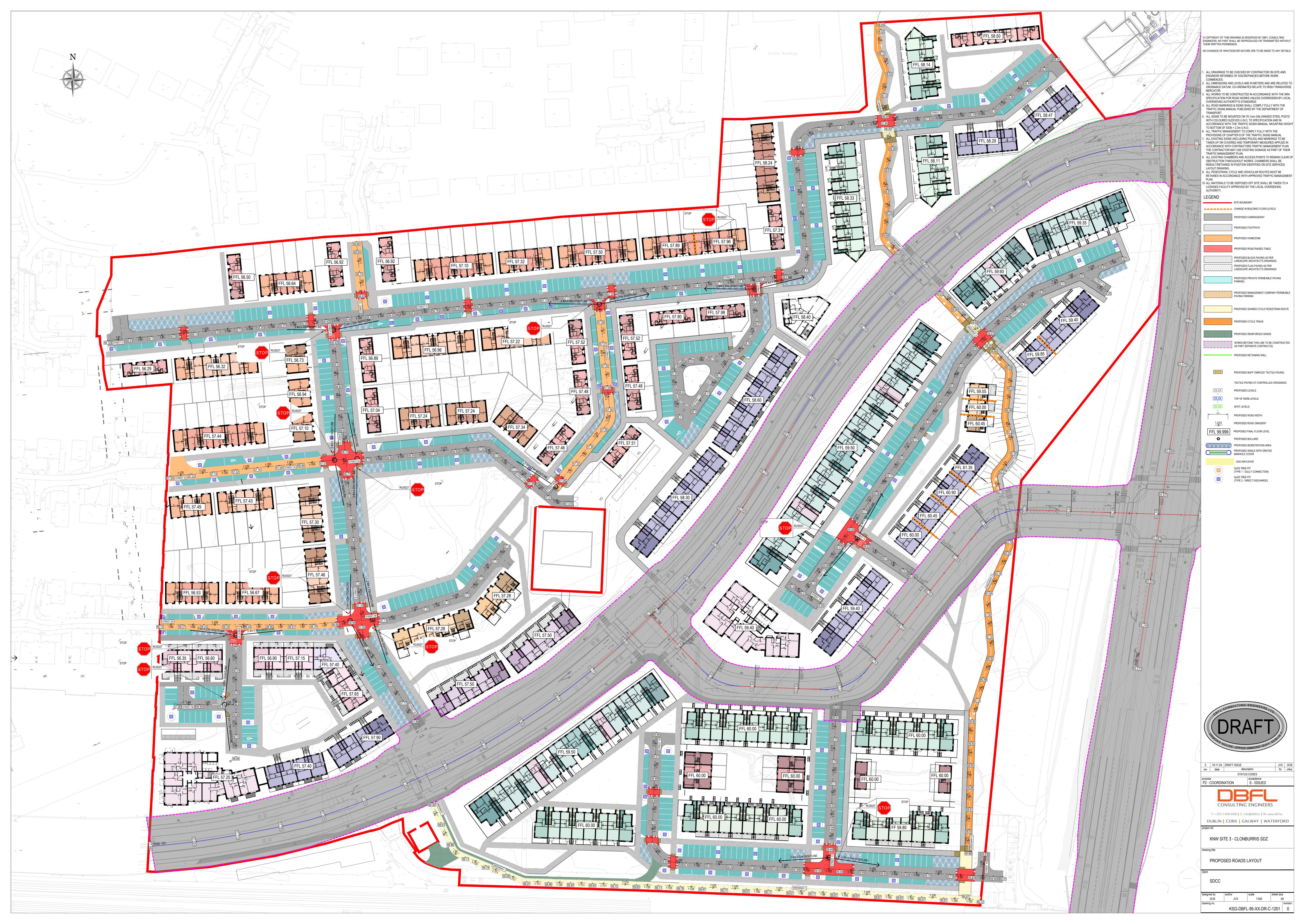
Audit Stage: Stage 1 RSA

Date Audit Completed: 13th January 2025

Paragraph No. in		To Be Completed by Audit Team Leader		
Safety Audit Report	Problem accepted (yes/no)	Recommended measure Accepted (yes/no)	Describe alternative measure(s). Give reasons for not accepting recommended measure. Only complete if recommended measure is not accepted.	Alternative measures or reasons accepted by auditors (yes/no)
2.1	Yes	Yes		
2.2	Yes	Yes		
2.3	Yes	Yes		
2.4	No	No	The overall movement concept and road hierarchy as proposed has been developed to match the Clonburris SDZ (Figure 2.2.7) as far as feasible. The Greenways (Shared ped/cycle routes) and cycle tracks have been provided at all locations where required in the SDZ including additional pedestrian and cycle links. Within the development, the SDZ provides clear guidance on the allowable Local Street and Homezone cross sections for each street (Figure 2.2.6), which does not allow for cycle tracks or lanes. Clonburris SDZ Link: <u>Clonburris-SDZ- Planning-Scheme</u>	Yes
2.5	Yes	Yes		
2.6	Yes	Yes		
2.7	Yes	Yes		
2.8	Yes	Yes		

2.9	Yes	Yes		
			Sufficient accessible parking is provided north of the houses indicated and all houses have parking within 50m. Including the houses indicated. An additional disabled parking space will be added to the parking layout as shown near the houses indicated.	
2.10	No	No	PROPOSED ACCESSIBLE PARKING POPOSED ADDITIONAL ACCESSIBLE PARKINC	Yes
2.11	Yes	Yes		
2.12	No	No	 Junction A, B and C are proposed as part of a separate planning application as part of the Norther Link Street currently lodged for Planning. A full traffic model has been developed taking the proposed surrounding Kishoge Site 3, 4 and 5 future traffic into account and showing no "rat running". Further, the proposed changes to Adamstown Road and the Northern Link Street (both separately planned) are proposed as dictated by the Clonburris SDZ through consultation with SDCC and the NTA. 	Yes
2.13	Yes	Yes		
2.14	Yes	Yes		
2.15	No	No	The junction from the separately planned junction from the Northern Link Street to the Kishoge site 3 development falls within the scope of a separate project. Further, the junction is currently proposed as a raised pedestrian priority crossing where the crossing vehicles entering and exiting the development have to stop for crossing pedestrians and cyclists.	Yes

2.16	Yes	Yes	
2.17	Yes	Yes	
2.18	Yes	Yes	
2.19	Yes	Yes	
2.20	Yes	Yes	


Safety Audit Signed off Design Team Leader Print NameDieter Bester..... Date ...17/01/2025.. Safety Audit Signed off Employer Print Name Date Safety Audit Signed off Audit Team Leader Date ...20/1/2025..... Print NameGeorge Frisby..... Please complete and return to: Roadplan Consulting, 7, Ormonde Road Kilkenny E-mail: info@roadplan.ie

APPENDIX A

List of Drawings Examined

The following drawings have been provided electronically in PDF format by DBFL Consulting Engineers and are appended.

Drawing Number	Rev	Drawing Title
KSG-DBFL-95	0	XX-DRXC-1201

Appendix E : SITE INVESTIGATION

IGSL Ltd

Clonburris Phase 3

Ground Investigation & Geotechnical Interpretative Report

Project No. 25279A

August 2024

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info@igsl.ie W: www.igsl.ie

Distribution	Report Status	Revision	Date of Issue	Prepared By:	Approved By:
DBFL Consulting Engineers	PDF by email	0	28-08-2024	J. Lawler BSc MSc PGeo EurGeol FGS	P. Quigley BEng CEng MICE MIEI FGS RoGEP Adviser

DOCUMENT ISSUE REGISTER

TABLE OF CONTENTS

Foreword

- 1. Introduction
- 2. Fieldworks
 - 2.1 General
 - 2.2 Rotary Core Drillholes
 - 2.3 Trial Pits
 - 2.4 Slit Trenching
 - **2.5** Plate Bearing Tests
 - **2.6** Soakaway Test (to BRE 365) **2.7** Groundwater Monitoring
 - 2.7 Groundwater Monitoring
 - 2.8 Surveying of Exploratory Hole Locations
- 3. Laboratory Testing
- 4. Desk Study
 - 4.1 Online GSI Database4.2 Online OSI Database / Aerial Imagery
- 5. Ground Conditions & Groundwater
 - 5.1 Ground Profile Superficial Deposits
 - 5.2 Bedrock
 - 5.3 Groundwater
 - **5.4** Geotechnical Parameters
- 6. Ground Assessment & Engineering Recommendations
 - 6.1 General
 - 6.2 Bearing Capacity & Foundations
 - 6.3 Ground Bearing Slab
 - 6.4 Groundwater / Infiltration
 - 6.5 Slopes / Batters
 - 6.6 Pavement Construction
 - 6.7 Buried Concrete
 - 6.8 Earthworks Testing
 - 6.9 Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for

Landfill

References

FIGURES

Figure 1	- Site Location Plan
Figure 2	 Quaternary Soils Plot for the Clonburris Phase 3 Site
Figure 3	- Bedrock Geological Map for the Clonburris Phase 3 Site
Figure 4A, 4B & 4C	- Historic OSI drawings with 'Pump' reference for the Kishoge site
Figure 5	- OSI aerial orthophotographs for the Kishoge site 1995 - 2018
Figure 6A – 6C	- Trial pit sidewall profiles showing Made Ground
Figure 7A – 7B	- Natural ground sidewall profiles photographed during trial pitting.
Figure 8	- SPT Plot versus Depth for Rotary Drillholes
Figure 9	- Cores in RC02 from 2.60m bgl to 5.60m
Figure 10	- Is(50) strengths obtained from diametrial Point Load Strength Index testing

TABLES

Table 1	 Water measurements in on-site exploratory holes
Table 2	- Recommended Geotechnical Parameters
Table 3	 Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)
Table 4	- Equivalent CBR % Values obtained in Plate Bearing Testing
Table 5	- Sample description of soils used in Earthworks testing
Table 6	 Summary Details of Laboratory Testing samples

APPENDICES

Appendix 1	 Rotary Drillhole Records and Core Photographs / SPT Er Calibration Certificate
Appendix 2	- Trial Pit Logs & Photographs
Appendix 3	- Slit Trench Records & Photographs
Appendix 4	- Plate Bearing Test Records
Appendix 5	- Soakaway Test Records (to BRE 365)
Appendix 6	- Groundwater Monitoring Records
Appendix 7	 Geotechnical Laboratory Test Results – Soil
Appendix 8	 Chemical / Environmental Testing – Soil
Appendix 9	- O'Callaghan Moran Waste Characterisation Assessment
Appendix 10	- Chemical Testing – Rock
Appendix 11	 Geotechnical Laboratory Test Results – Rock
Appendix 12	- Exploratory Hole Location Plan

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project (**Clonburris Phase 3**) have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as Engineers Ireland Specification for Ground Investigation (2nd Ed, 2016), BS 5930 (2015+A1:2020) and BS 1377 (Parts 1 to 9) and the following European Norms:

- EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- EN ISO 14688-1:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- EN ISO 14688-2:2017 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Principles for a classification
- EN ISO 14689-1:2017 Geotechnical Investigation and Testing Identification, description & classification of rock

The Eurocode 7, Part 2 – Ground Investigation and Testing GI specification shall be read in conjunction with the Specification and Related Documents for Ground Investigation in Ireland, 2nd Edition, published by Engineers Ireland in 2016.

Reporting

No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations. The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for Clonburris Infrastructure Limited and DBFL Consulting Engineers and the information should not be used without their prior written permission. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

Boring Procedures

Where required, 'shell and auger' or cable percussive boring technique is employed as defined by Section 6.3 of IS EN ISO 22475-1:2006. The boring operations, sampling and in-situ testing meet with the recommendations set out in IS EN 1997-2:2007 and BS 1377:1990 and EN ISO 22476-3:2005. The shell and auger boring technique allows for continuous sampling in clay and silt above the water table and sand and gravel below the water table (Table 2 of IS EN ISO 22475-1:2006).

It is highlighted that some disturbance and variation is unavoidable in particular ground (e.g. blowing sands, gravel / cobble dominant glacial deposits etc). Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

In-Situ Testing

Where required, Standard Penetration Tests (SPT's) are conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Soil Sampling

Three categories of sampling methods are outlined in EN ISO 22475-1:2006. The categories are referenced A, B and C for any given ground conditions and are shown in Tables 1 and 2 of EN ISO 22475-1:2006. Reference should be made to EN 1997-2:2002 for guidelines on sample class and quality for strength and compressibility testing. Samples of quality classes 1 or 2 can only be obtained by using Category A sampling methods.

Class 1 thin wall undisturbed tube samples (UT100) were obtained in fine grained soils and strictly meet the requirements of EN 1997-2:2002 and EN ISO 22475-1:2006. Soil samples for laboratory tests are divided into five classes with respect to the soil properties that are assumed to remain unchanged during sampling, handling transport and storage. The minimum sample quality required for testing purposes to Eurocode 7 compatibility (EN 1997-2:2002) is shown in Table A.

EN 1997 Clause	Test	Minimum Sample Quality Class	
5.5.3	Water Content	3	
5.5.4	Bulk Density	2	
5.5.5	Particle Density	N/S	
5.5.6	Particle Size Analysis	N/S	
5.5.7	Consistency Limits	4	
5.5.8	Density Index	N/S	
5.5.9	Soil Dispersivity	N/S	
5.5.10	Frost Susceptibility	N/S	
5.6.2	Organic Content	4	
5.6.3	Carbonate Content	3	
5.6.4	Sulphate Content	3	
5.6.5	рН	3	
5.6.6	Chloride Content	3	
5.7	Strength Index 1		
5.8	Strength Tests 1		
5.9	Compressibility Tests 1		
5.10	Compaction Tests N/S		
5.11	Permeability	2	

Table A – Details of Sample Quality Requirements

N/S – not stated. Presume a representative sample of appropriate size.

Samples recovered from trial pits or trenches meet the requirements of IS EN ISO 22475-1. It is highlighted that unforeseen circumstances such as variations in geological strata may lead to lower quality sample classes being obtained.

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible, drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2017 and IS EN ISO 14688-2:2017. Rock weathering classification conforms to IS EN ISO 14689-1:2017 along with discontinuities (bedding planes, joints, cleavages, faults etc) as classified in Section 6.4 of IS EN ISO 14689-1:2017 and Annex C of same. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Where peat has been encountered, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992. Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 and Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QJEG, Vol. 19, 1986.

Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material will be discarded. Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

IGSL has undertaken a programme of site investigation works in the area of the proposed Clonburris Strategic Development Zone, specifically in the area near the Balgaddy 38kV substation, west of the R136 Grange Castle Road (also referred to as the Outer Ring Road) and north of the Kildare Rail Link (Figure 1). The lands at Clonburris Phase 3, measuring approximately 34 acres, are currently characterised by transitional agricultural landscapes and border mature housing developments to the west and north. The exploratory hole records and an interpretation of the complete 'Phase 3' tranche of site investigation works feature in this report.

Figure 1 - Site Location Plan - intrusive locations plotted

Retrieved from the Ordnance Survey of Ireland

The investigation comprised rotary core drilling, trial pitting and slit trenching. In situ plate bearing tests and soakaway tests (to BRE365) were also performed on site. The investigations were executed in accordance with BS 5930, Code of Practice for Site Investigations (BS 5930:2015 +A1:2020) and EN 1997-2 Eurocode 7 Part 2 Ground Investigation & Testing and supervised by an IGSL geotechnical engineer.

Geotechnical, chemical and environmental laboratory testing was scheduled on a range of soil and rock samples. The geotechnical soil testing included moisture contents, Atterberg Limits and particle size distribution [PSD] testing. Soil reusability testing included Moisture Condition Value (MCV)

tests, CBR and compaction testing. Suites of both chemical testing and environmental testing were undertaken on soils. A *"Pyrite Chemical Suite"* was scheduled on near rockhead samples taken from the base of trial pits TP06, TP07, TP16 and TP21. Rock strength testing on recovered cores comprised point load strength index testing [PLSI].

This report presents an interpretation of the data and an assessment of the key geotechnical issues. The exploratory hole locations are plotted on the site plan in Appendix 12.

2. FIELDWORKS

2.1 General

The bulk of the geotechnical investigation works were carried out during March / April 2024 with the rotary drilling works following in May 2024. The site works comprised the following:

- Rotary Core Drillholes (6 No.)
- Trial Pits (29 No.)
- Slit Trenching (29 No.¹)
- Plate Bearing Tests (21 No.)
- Soakaway Tests (to BRE365) (7 No.)
- o Groundwater Monitoring
- Surveying of Exploratory Hole Locations

¹ Slit trenches ST09A and ST25A were carried out to further explore the presence of buried cables locally

2.2 Rotary Core Drillholes

Rotary core drilling was carried out (holes denoted RC_) at six locations using a Comacchio GEO-405 rig. Symmetrex drilling was utilised within the overlying superficial deposits with coring techniques used in the underlying bedrock when encountered. Drillholes were taken to depths ranging 5.30m to 7.50m bgl. The rotary drilling in bedrock produced 78mm diameter cores. Bedrock was logged as weak to strong, medium to thinly bedded (to thinly laminated where fissile mudstone/shale), grey/dark grey/black, fine-grained, LIMESTONE. The rock was further described as predominantly argillaceous limestone with layers of calci-siltite limestone, local stylolites and with pyrite present. The rock mass was slightly weathered to moderately weathered at fissile mudstone/shale zones.

The cores were placed in 3m capacity timber boxes and logged by an IGSL engineering geologist. This included photography of the cores with a digital camera. Where rock core was recovered, a graphic fracture log is also presented alongside the mechanical indices. This illustrates the fracture state of the rock cores and allows easy identification of highly fractured / non-intact zones and discontinuity spacings. It should be noted that no correction for dip of the joints has been made and that the spacings shown are successive joint / core intersections within the core.

Standard Penetration Tests (SPT's) were performed during open hole drilling and given the nature of the soils, a solid cone was used. It is noted that the SPT N-Values reported are the number of blows for 300mm increment penetration (e.g. RC01 at 1.50m where N=23). These exclude the seating blow values, which represent the initial 150mm depth of penetration. Where partial penetration was achieved during testing, the number of blows is shown for the actual penetration depth achieved (e.g. RC06 at 4.50m where N=25/10mm). In accordance with Eurocode 7, the SPT hammer has been calibrated and the energy ratio (Er) value is incorporated on the engineering logs. It is highlighted that the SPT N-Values reported on the engineering logs are uncorrected for energy ratio.

The core log records are presented in Appendix 1 and this includes engineering geological descriptions, details of the bedding / discontinuities and mechanical indices (TCR, SCR and RQD's) for each core run. Core photographs are also presented in the aforementioned Appendix 1 and these illustrate the structure and fracture state of the bedrock. The SPT energy ratio calibration certificate features in Appendix 1.

2.3 Trial Pits

Trial pitting was performed at twenty-nine locations across the site. The trial pits were excavated, logged and sampled under the direction of an IGSL geotechnical engineer in accordance with BS 5930 (2015+A1:2020). Bulk samples (B) (typically 20 to 30kg) were taken as the pits progressed.

The bulk samples were placed in heavy-duty polyethylene bags. The trial pits were backfilled with the as-dug arisings and reinstated to the satisfaction of IGSL's site geotechnical engineer. The trial pit logs and photos are presented in Appendix 2 and include descriptions of the soils encountered, groundwater conditions and stability of the pit sidewalls.

2.4 Slit Trenching

Slit trenching was undertaken at twenty-nine locations on the site. The trenches were excavated on a mixture of both grassland and gravel-surfaced areas in lands both north and south of the L1058, Adamstown Avenue. The machine-assisted hand-dug trenches were opened to expose the track of existing buried services and were specifically set out to intercept same based on existing utility drawings. In certain areas, no services were recorded in the open trenchwork. Additional pits were undertaken at locations ST09A and ST25A where visible evidence of ground disturbance suggested services were likely at depth.

Detailed records of the pit findings including depth, diameter and type of service (where found) are presented in Appendix 3. The soil profile provided on the slit trench logs describes the majority of the soils across the transverse trench. Trench extremities (X and Y) were surveyed to ITM using GPS techniques. In addition, the locations of individual services exposed in the pits were also captured. Photographs taken during excavation are presented on the logs as well as separately in Appendix 3 of the report.

2.5 Plate Bearing Tests

Plate bearing tests were conducted at twenty-one locations at depths ranging 0.50m to 0.90m below ground level [bgl]. Plate testing was undertaken to evaluate the modulus of sub-grade reaction (Ks) and equivalent CBR value. A 450mm diameter plate was used for the tests with kentledge provided by a mechanical excavator. Two load cycle tests were performed and the load / settlement plots, Ks and equivalent CBR values are presented in Appendix 4.

2.6 Soakaway Test (to BRE 365)

Seven infiltration tests (SA01-SA07) were performed to assess the suitability of the sub-soils for dispersion of storm water through a soakaway system. The infiltration tests were performed in accordance with BRE Digest 365 'Soakaway Design'. To obtain a measure of the infiltration rate of the sub-soils, water was poured into each test pit, with records taken of the fall in water level against time. Following the first soak cycle, the procedure was repeated to ensure saturation of the sub-soils. The infiltration rate is the volume of water dispersed per unit of exposed area per unit of time, and is generally expressed as metres / minute or metres / second. Designs are based on the slowest infiltration rate, which is generally calculated from the final soak cycle. The soakaway design logs are presented in Appendix 5.

2.7 Groundwater Monitoring

Groundwater monitoring was undertaken following installation of standpipes in each of the rotary core drillholes. Groundwater levels were measured using an electric dipmeter. The levels recorded are shown in Appendix 6.

2.8 Surveying of Exploratory Hole Locations

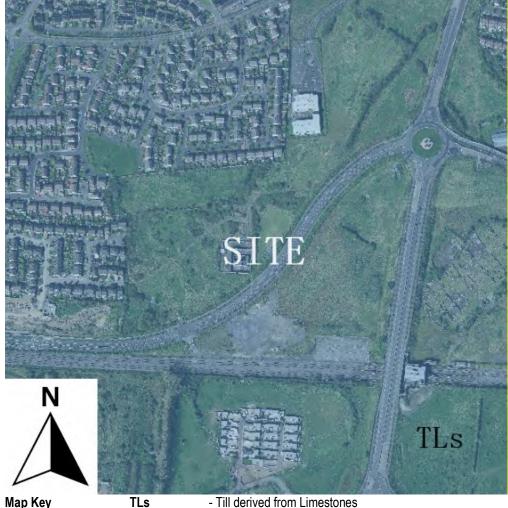
Following completion of the exploratory works, surveying was carried out using GPS techniques. Co-ordinates (x, y) were measured to Irish Transverse Mercator and ground levels (z) established to Malin Head. The co-ordinates and ground levels are shown on the exploratory hole logs with locations shown on the exploratory hole plans in Appendix 12.

3. LABORATORY TESTING

Geotechnical laboratory testing was carried out at IGSL's INAB-accredited laboratory in accordance with the methods set out in BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute:1990. The laboratory applies best practice management systems as per International Standard IS EN ISO/IEC 17025. The geotechnical testing included moisture contents, Atterberg Limits, particle size distribution [PSD], MCV, CBR and dry density / moisture content relationship (compaction) testing. The results from geotechnical testing on selected trial pit soils are presented in Appendix 7.

Chemical analysis incorporating BRE SD1 Suite D was scheduled on recovered soils. The soil chemical results are presented in Chemtest report 24-16171 in Appendix 8. Eighteen soil samples were selected for Waste Acceptance Criteria (WAC) analysis as per the Rilta suite of testing. The results can be used to classify the material with regard to its potential for disposal to landfill. The results are enclosed in the aforementioned Chemtest report in Appendix 8. The same results formed the basis of a waste classification assessment which was undertaken by O'Callaghan Moran & Associates [OCM] in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015). This report is presented separately in Appendix 9.

A "*Pyrite Chemical Suite*" to EN1744 'Tests for Chemical properties of Aggregates' was scheduled on four samples acquired from the base of four trial pits carried out on site. The samples were generally described as "Possible highly weathered rockhead recovered as grey brown clayey/silty GRAVEL". The chemical results are presented in Appendix 10.

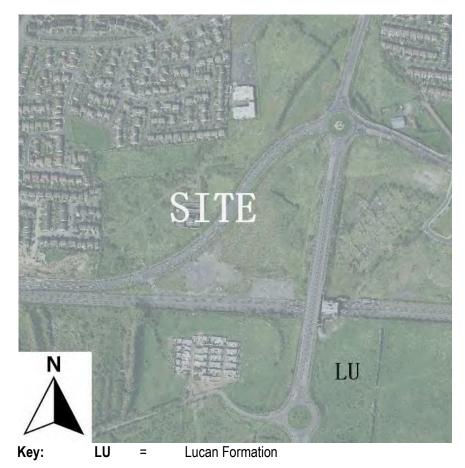

Finally, rock core strength testing comprised Point Load Strength Index [PLSI] testing. The results are presented in Appendix 11.

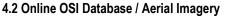
4. DESK STUDY

4.1 Online GSI Database

The Quaternary Soils plot for the area (Figure 2 - retrieved from GSI website) reaffirms the findings of the investigation and highlights the presence of clay-dominant till (TLs) derived from the ubiquitous Carboniferous Limestone of the area. Shallow outcrop or subcrop is also flagged in the area, to the east of the Outer Ring Road.

Figure 2 - Quaternary Soils Plot for the Clonburris Phase 3 Site




- Till derived from Limestones

Reference to the GSI map for the area (Figure 3, 1:100,000 Solid Geology series) shows that the site is underlain by Lower Carboniferous, Lucan Formation. The Lucan Formation (Nolan 1986, 1989) forms the bulk of the basinal rocks throughout the geologically termed 'Dublin Basin', and is characterised by graded, intraclastic skeletal packstone/grainstone interbedded with anoxic calcareous mudstone / black shale, laminated calcisiltite and argillaceous micrite (i.e. impure limestone with clay minerals).

Its base is defined by the first appearance of thick graded beds of limestone, and a marked decrease in the proportion of interbedded shale, compared with the underlying Tober Colleen Formation. The Lucan Formation is widely known as the Calp Limestone (Marchant and Sevastopulo, 1980) but is also referred to as the Upper Dark Limestone and has long been a source of building materials and aggregate for Dublin. The Calp is largely undifferentiated geologically.

Figure 3 - Bedrock Geological Map for the Clonburris Phase 3 Site (retrieved from the GSI website)

Inspection of historic 25" drawings for the area reveals the presence of what appears to be a reservoir in the east of the site nearing the current R136 Outer Ring Road. A '*Pump*' is present in the same area in the 1897-1913 OSI drawing. This prominent feature endures and can be viewed in the 25" Cassini drawing of the 1930's (Figure 4A & 4B).

Aerial orthophotography reveals an interesting development from 1995 (See Figure 5). A trackway crosses east-west across the site which leads to an area of apparent tipping / stockpiling. The area of disturbed ground persists into the colour imagery dating from 1996-2000. The Balgaddy 38kV Substation also appears in the image as does the linear scar of trenchwork resulting from works on a 900mm diameter gas transmission main.

The drawings from 2012 show the Outer Orbital Route under construction. The R136 roundabout is in place but spurs to both Balgaddy / Neillstown to the east and Ballyowen / Lucan to the north are as yet undeveloped. Soil stockpiling is again noted, this time to the west and northwest of the newly constructed R136 roundabout. The current road network, including Adamstown Avenue can be viewed in the more recent 2013-2018 orthophotograph.

Figure 4A, 4B & 4C – Historic OSI drawings with 'Pump' reference for the Kishoge site Fig 4A Ordnance Survey of Ireland 25" drawing dated 1897-1913 depicting '*Pump*'. **Fig 4B** OSI 25" Cassini drawing with similar ponded feature to that of the 1897-1913 drawing. **Fig 4C** OSI 2013-2018 aerial image showing existing landscape with the R136 forming the eastern site boundary.

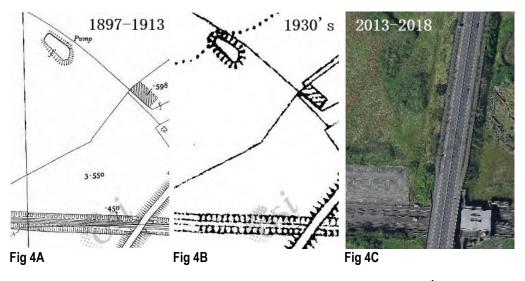


Figure 5 –OSI aerial orthophotographs for the Kishoge site 1995 - 2018 (Tailte Éireann)

5. GROUND CONDITIONS & GROUNDWATER

5.1 Ground Profile - Superficial Deposits

The following is a summary of the ground conditions encountered across the Phase 3, Clonburris SDZ site, west of the R136 Outer Ring Road / Grange Castle Road.

MADE GROUND

North of Adamstown Avenue

- Given the recent disturbance documented in the aerial orthophotographs from 1995 (See Figure 5), the existence of Made Ground soils in the stratigraphy is not unexpected.
- Extensive CLAY fill was uncovered in TP02. TP02 lies in an area flagged as having soil disturbance dating from the period of R136 road construction (See Figure 5). Dark brown and dark grey sandy gravelly CLAY soils extended to 1.70m (56.67m OD) where a greyish brown CLAY/SILT was unearthed. This was remarked as containing organic matter. Although classed pitside as Made Ground, this may be a buried topsoil / organic subsoil deposit. This extended to 2.30m (56.07m OD) at which point natural stiff soils were logged.
- In the same field parcel as TP02, nearby TP04 to the south also revealed a thick sequence of Made Ground. Underlying the cover of topsoil, from 0.40m bgl the Made Ground was described as dark grey sandy gravelly silty CLAY with boulders (up to 700mm), cobbles, plastic and steel. A strong organic odour was remarked. The pit ended in Made Ground at 2.50m bgl (57.66m OD).
- At TP07, near the northern boundary of the site close to Oldbridge housing estate, a layer of Made Ground was logged from 0.15m to 1.10m bgl (55.15m OD). It was signaled by the inclusion of rare concrete blocks, rare rubbish / plastic and steel. However, it is thought that these anthropogenic inclusions may be localised in their distribution. A stiff Clay is logged from 1.10m (54.45m OD).
- Rare plastic / rubbish is observed in the topsoil excavated at TP12 to a depth of 0.35m bgl.
- The most extensive collection of rubbish / plastic was logged in TP13. It was measured from ground level to 1.40m bgl. Anthropogenic content was >2% in this area, being rare to occasional. The dig location is linked with the historical soil disturbance noted from 1995 coupled with being proximal to the construction of the adjacent Balgaddy substation. Stiff clay was viewed from 1.40m to the pit base at 2.50m. For the same reasons as TP13, the uppermost soils in nearby TP16 also contained Made Ground to 0.60m. With an absence of rubbish / plastic, the soil disturbance is more likely to relate to construction activity at the time of the substation construction.

South of Adamstown Avenue

- At TP19, to the northeast of the site, a thin cover of topsoil was found to overlie an equally thin layer of clay Made Ground containing rare plastic / rubbish, wood, red brick and concrete fragments. This extended to 0.40m bgl. Stiff indigenous soils were found immediately below this layer.
- Overall, across the southern part of the site, south of Adamstown Avenue, there were variable thicknesses of Made Ground exposed during pitting. In TP24, Made Ground descended to a total of 0.70m bgl (58.93m OD). The Clay soil contained rare plastic / rubbish, pipe fragments and cobbles and boulders. Elsewhere, the deepest accumulation

of Made Ground was at TP20 where a 1.40m thick layer of Made Ground was identified. Rare plastic / rubbish was found to 1.0m (58.03m OD). Possible Made Ground extends from 1.40m to 1.90m. However, this is thought to be an indigenous layer of slightly organic subsoil, likely buried decades earlier by the overlying mixed clays.

- At only one pit south of Adamstown Avenue is there an absence of Made Ground. This occurs in TP21 where natural soils extend from ground level to 1.90m bgl (56.28m OD) ending on possible rockhead.
- Excavated into an embankment placed towards the southeastern flank of the site, up to 3.20m (to 58.69m OD) of Made Ground was found in TP28 with 2.60m (to 59.55m OD) in pit TP29.

Figures 6A – 6C – Trial pit sidewall profiles showing Made Ground.

Fig 6A TP04, positioned ca. 2m higher than nearby trial pits, found dark grey slightly sandy slightly gravelly CLAY (MADE GROUND) to 2.50m bgl (57.66m OD). Rare plastic / rubbish and steel combined with a strong organic odour were noted.

Fig 6B At TP13, >2% plastic / rubbish was recorded in the Clay Made Ground to a depth of 1.40m (56.02m OD).

Fig 6C At TP22, Topsoil overlies a dark brown to brown sandy gravelly CLAY with rare plastic and cobble-sized concrete blocks. Possible Made Ground continues to 1.50m with an organic signature. This is thought to be buried topsoil / subsoil.

TOPSOIL

 Where naturally occurring topsoil was unearthed, it was found to be present in layers ranging 200mm to 450mm thick. A gradational lower transition was present whereby the topsoil was underlain by a SILT/CLAY subsoil, almost devoid of gravel.

GLACIAL DEPOSITS

- A fine-grained light brown occasionally mottled orange brown SILT/CLAY subsoil layer, generally firm in consistency, was found underlying the topsoil. Occasionally this was noted as firm to stiff with grey brown mottling also observed.
- Where indigenous deposits were encountered, the soils increased in strength to stiff and were found to contain an increasing gravel-sized clast content with depth. Colour change to grey was observed with depth.
- A stiff dark grey layer completed many of the pits. This was increasingly gravelly, with angular cobble and boulder-sized fragments frequently noted. Towards the base of this layer, the increased volume of angular tabular and platy material caused the layer to be described as a "Possible Weathered Rockhead" horizon. This was noted in six of the twenty-nine pits namely TP05, 06, 07 and 08 as well as TP16 and TP21.
- Rotary drilling revealed bedrock at depths ranging 2.30m to 2.70m north of Adamstown Avenue with rock coring commencing at the deeper depths of 4.30m and 4.50m south of the Avenue. However, in both RC05 and RC06 south of the roadway, a layer of "clayey COBBLES" was intercepted shy of rock. This may well be a layer of weathered rock.

Figures 7A – 7B – Natural ground sidewall profiles photographed during trial pitting. Fig 7A TP05 with topsoil overlying firm to stiff and stiff brown mottled grey & light brown sandy gravelly CLAY with cobbles to 1.30m. Stiff grey blue sandy gravelly silty CLAY to 1.70m. A possible highly weathered rockhead recovered as clayey/silty GRAVEL from 1.70m to the pit base at 2.0m. Slow water entry at 1.70m.

Fig 7B At TP07, topsoil was found overlying a firm brown slightly sandy slightly gravelly SILT/CLAY with rare anthropogenic content. Stiff grey sandy gravelly silty CLAY persisted from 1.10m to 1.80m. From 1.80m to the pit base at 2.50m, possible highly weathered rock was recovered as clayey/silty GRAVEL. Again, as with TP05, a moderate water strike was recorded towards the base of the pit at 2.30m.

In-situ testing was undertaken during the construction of drillholes RC01-RC06. The standard penetration test [SPT] allows for an appraisal of the ground stiffness. A plot showing the blowcounts generated from testing at each hole is presented in Figure 8. It illustrates the occurrence of stiff soils from 1.50m. The depths of rock proven in holes RC01-RC04 allowed only one SPT test to be performed ahead of coring, ie., at 1.50m bgl. Two of the three deeper tests were carried out in RC05 and RC06 in a stratum comprising "clayey COBBLES" at a depth of 3m.

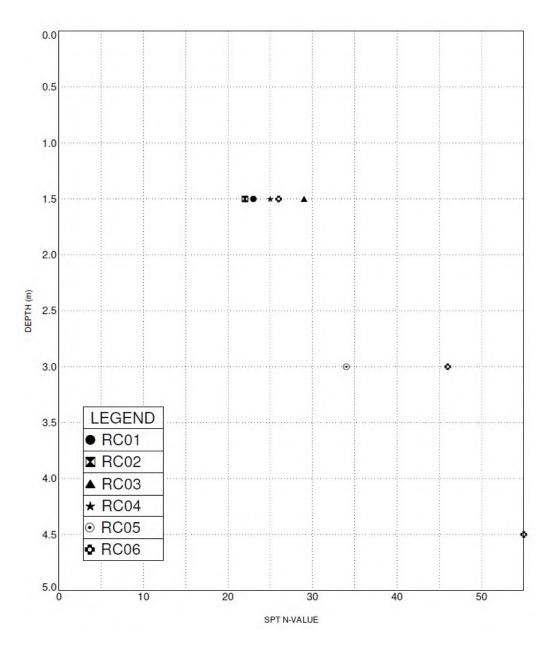


Figure 8 – SPT Plot versus Depth for Rotary Drillholes (uncorrected for energy ratio)

5.2 Bedrock

As referenced earlier in Section 4, the GSI rock map for the area (Figure 3, 1:100,000 Solid Geology series) shows that the Lucan Formation underlies the site. The formation is comprised of argillaceous bioclastic limestones and interbedded shales.

Rotary drilling was conducted at six locations. At each location, drilling penetrated a thin cover of glacial till with core recovery in the underlying bedrock commencing at depths ranging from 2.30m to 4.50m. Figure 9 shows the core recovery in RC02.

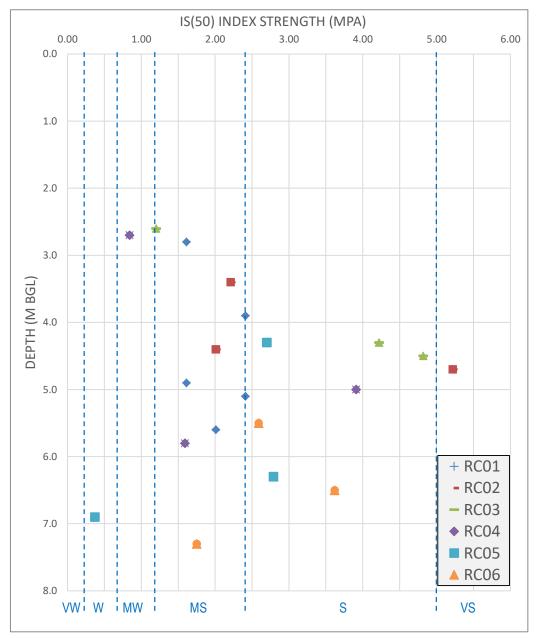

The recovered cores were logged as weak to strong, medium to thinly bedded (to thinly laminated where fissile mudstone/shale), grey/dark grey/black, fine-grained, LIMESTONE. The rock was further described as predominantly argillaceous limestone with layers of calci-siltite limestone, local stylolites and with pyrite present. The rock mass was slightly weathered to moderately weathered at fissile mudstone/shale zones.

Figure 9 - Cores in RC02 from 2.60m bgl to 5.60m

Discontinuity spacings in the rotary cores generally ranged from medium (200 to 600mm) to closely spaced (60 to 200mm), rarely widely (600 to 2000mm) spaced. The discontinuity surfaces were typically smooth to locally rough, planar to locally curviplanar. Apertures were tight to locally partly open with local clay smearing. Discontinuities host calcite veinfill (from 1-20mm thick). Dips are subhorizontal, 10° to 15°, rarely 40° to 45° and very locally 70°.

The point load strength index (PLSI) test data produced $I_s(50)$ values ranging from 0.37 to 5.22 MPa with a mean value of 2.49 MPa. The PLSI strengths plotted in Figure 10 form a broad scatter but are predominantly located to the right of the plot. This implies the cores are generally medium strong to strong. Points to the left of the plot are suggestive of weak rock. They are likely to have resulted from tests undertaken on cores sampled from weaker interbedded shale / mudrock as opposed to the more prominent strong calcisiltite limestone.

Figure 10 – I_s(50) strengths obtained from diametrial Point Load Strength Index testing

VW = Very Weak, W = Weak, MW = Moderately Weak, MS = Medium Strong, S = Strong, VS = Very Strong (ISO 14689:2017 (E))

Using a correlation factor (K) of 20 to assess compressive strength, this suggests a characteristic strength envelope in the order of 7.4 to 104.4 MPa and categorizes the bedrock as weak (5 to 12.5MPa) to lower bound very strong (100 to 250MPa). The visual strength descriptors determined during engineering geological logging marry well with the overall plot scatter in Figure 10.

ISO 14689:2017 (E) rock strength parameters are drawn on Figure 10 to allow correlation between UCS and Point Load Strength tests. A correlation factor (K) of 20 was used to plot the ISO 14689:2017 (E) MPa strength divisions on the Point Load strength ($I_s(50)$) plot.

5.3 Groundwater

Groundwater strikes were intercepted during a number of the excavations on site. Table 1 lists the strike level as well as the intensity of water ingress, the type of stratum in which the ingress was observed, and at what depth (if any) the water equilibrated at upon completion of drilling. The potential exists for seasonal changes in groundwater level. The works were carried out during March, April and May 2024. It is likely that groundwater will be subject to seasonal variations.

Table 1 – Water measurements in on-site exploratory holes

Location	Exploratory Hole No.	Water Struck m bgl	Stratum Description	Rate of Flow	Remarks / Stratum of water ingress (m OD)
		1.20	Interface of dark brown and underlying dark grey CLAY (MADE GROUND)	Seepage	
	TP02	1.70	Interface of dark grey CLAY and underlying organic SILT/CLAY (Probable MADE GROUND)	Slow	
	TP05	1.70	Possible Highly Weathered Rockhead	Slow	Water entry shy of possible rock
	TP06	1.70	Possible Highly Weathered Rockhead	Moderate	Water entry shy of possible rock
	TP07	2.30	Possible Highly Weathered Rockhead	Slow	Water entry shy of possible rock
Avenue	TP08	1.0	CLAY overburden	Seepage	Slow water entry shy
North of Adamstown Avenue		2.0	Possible Highly Weathered Rockhead	Slow	of possible rock
of Adam	TP09	2.0	Possible Rockhead	Slow	Water entry shy of possible rock
North	TP11	0.90	Firm brown mottled grey yellow sandy gravelly silty CLAY	Seepage	Water entry shy of
	1611	1.90	Possible Rockhead	Slow	possible rock
	TP12	1.50	Stiff CLAY	Slow	
	TP13 1	1.0	Dark brown sl sandy sl gravelly CLAY with rare to occasional rubbish / plastic (MADE GROUND)	Seepage	
		1.60	Stiff CLAY	Seepage	
		2.40	Stiff to very stiff CLAY	Slow	

Location	Exploratory Hole No.	Water Struck m bgl	Stratum Description	Rate of Flow	Remarks / Stratum of water ingress (m OD)
	TP15	1.60	Stiff dark blue to black cobbly CLAY / Possible Highly Weathered Rockhead	Slow	Water entry shy of possible rock
	TP16	1.90	Interface of Stiff CLAY and underlying Possible Highly Weathered Rockhead	Seepage	Water entry shy of possible rock
	TP17	2.30	Stiff dark blue to black cobbly CLAY / Possible Highly Weathered Rockhead	Seepage	Water entry shy of possible rock
	TP18	1.60	Stiff dark blue to black cobbly SILT / Possible Highly Weathered Rockhead	Seepage	Water entry shy of possible rock
	SA04	0.60	Base MADE GROUND / Uppermost firm/stiff CLAY	Seepage	No soakage reported in pit during course of test
	SA05	1.40	Base Test Pit in stiff CLAY	Seepage	No soakage reported in pit during course of test
/enue	ST01	0.80	CLAY (MADE GROUND)	Seepage	-
North of Adamstown Avenue	ST03	2.30	CLAY (MADE GROUND)	Seepage	-
	ST10	1.50	Clayey GRAVEL and cobbles (MADE GROUND)	RAPID	-
Vorth of	ST12	1.60	Possible Rock	Slow	Water entry shy of possible rock
Z	RC01	-	Water resting in Upper Bedrock	-	Depth to water post drilling 3.10 / 54.72m OD (End depth 5.70m) Dips taken in range 1.94-2.15m bgl
	RC02	-	Water resting in Upper Bedrock	-	Depth to water post drilling 3.70 / 52.79m OD (End depth 5.60m) Dips taken in range 2.17-2.42m bgl
	RC03	-	Water resting in Upper Bedrock	-	Depth to water post drilling 2.90 / 53.59m OD (End depth 5.50m) Dips taken in range 1.93-2.22m bgl
	RC04	1.90 (54.57)	Lower Superficial deposits / Nearing Rockhead	Slow	Depth to water post drilling 1.40 / 55.07m OD (End depth 5.30m) Dips taken in range 1.27-1.38m bgl

Location	Exploratory Hole No.	Water Struck m bgl	Stratum Description	Rate of Flow	Remarks / Stratum of water ingress (m OD)
	TP19	1.40	Possible Highly Weathered Rockhead	Slow	Water entry shy of possible rock
	TP20	2.50	Stiff to very stiff CLAY	Seepage	
	TP21	1.90	Possible Highly Weathered Rockhead	Slow	Water entry shy of possible rock
	TP23	0.50	SAND / SILT/CLAY (MADE GROUND)	Seepage	
	11 20	1.50	Stiff to very stiff CLAY	Seepage	
	TP26	1.30	Possible organic MADE GROUND overlying stiff to very stiff CLAY	Seepage	
en	SA06	1.40	Clay at base of pit	Moderate	10 ⁻⁵ m/s permeability
vn Aven	ST15	1.10	Water along ESB Trenchwork	RAPID	Water flowing along service
South of Adamstown Avenue	ST17	1.90	Water along GNI Trenchwork	RAPID	Water flowing along service
uth of Ac	ST21	0.40	SAND & GRAVEL (MADE GROUND)	Moderate	
Sol	ST22	1.0	SILT/CLAY (MADE GROUND)	Seepage	
	ST24	1.30	CLAY/SILT w/cobbles & boulders (Possible MADE GROUND)	Moderate	
	ST25	1.0	Firm / stiff Silty CLAY	Slow	
	RC05	3.90 (55.42)	COBBLES / Possible Highly Weathered Rockhead	Slow	Depth to water post drilling 4.0 (End depth 7.30m) Dips taken in range 3.34-3.76m bgl
	RC06	4.70 (55.05)	Upper Bedrock	Slow	Depth to water post drilling 3.20 / 56.55m OD (End depth 7.50m) Dips taken in range 3.19-3.44m bgl

Aside from some deep-seated water strikes in bedrock to the south of Adamstown Avenue - where the rock descends to greater depth - for the most part water strikes were evidenced at the interface

of the clayey overburden and underlying bedrock. The proliferation of Made Ground mantling much of the area saw the frequent occurrence of perched water seepages and slow water entries. There was a transitional zone logged at some locations where a fractured angular Gravel and Cobble layer were noted. Water entry was often associated with this 'rockhead' layer / upper weathered rock horizon.

Water entry was observed on a 'Rapid' scale where services were present and where a pathway was formed by the trenchwork. This was very evident in slit trenches ST10, ST15 and ST17.

The water levels recorded by the driller immediately after boring and coring were sited either within the rock or near rockhead.

5.4 Geotechnical Parameters

The ground conditions and associated properties of the superficial deposits and bedrock have been discussed in the previous sections. On foot of the field and laboratory test results, recommended geotechnical parameters are presented in Table 2. It is highlighted that the parameters shown are derived values (not characteristic values) in line with EN1997-1 CL 3.4.3. Characteristic design parameters should be carefully selected by contractors and their designers taking into consideration the ground conditions and engineering properties at particular areas within the Clonburris site.

Parameter	Fine Grained or Cohesive Glacial Till	Coarse Grained or Granular Soils	Bedrock
Bulk Unit Weight (kN/m³)	22	20	25
Angle of Friction (Ø)	34°	Varies 30 to 38°	28° Mudstone /Shale 36° Limestone
Undrained Shear Strength	40 kPa (soft / firm) 80 kPa (firm / stiff till)	NA	UCS Varies 60 to 100 MPa intact strong bedrock
Stiffness (Eu)	30 MPa (soft / firm till) 60 MPa (firm / stiff till)	70 to 100 MPa	10 GPa (intact strong bedrock)

Table 2 – Recommended Geotechnical Parameters

5. GROUND ASSESSMENT & ENGINEERING RECOMMENDATIONS

6.1 General

In light of the investigation findings, the following ground engineering items are discussed:

- Bearing Capacity & Foundations
- Ground Bearing Slab
- Groundwater / Infiltration
- Slopes / Batters
- Pavement Construction
- Buried Concrete
- Earthworks Testing
- Waste Acceptance Criteria [WAC] & Environmental Testing Soils destined for Landfill

6.2 Bearing Capacity & Foundations

Firm to stiff and stiff brown and grey brown glacial till soils were frequently logged towards the base of trial pits. These were exposed either under natural firm colour-mottled subsoil or underlying placed Made Ground soils. The Made Ground soil composition varied spatially throughout the site dependent on the historical use and the placement of soil stockpiles / formation of banked soil mounds (TP04, TP28 & TP29). There was a frequent occurrence of rubbish / plastic in many of the pits to depths of 1.70m / 56.67m OD (TP02) and 1.40m / 56.02m OD (TP13). Elsewhere, at former hardstanding areas, there was found a surficial layer of placed hardcore gravel (TP23-TP26).

In a number of pits, a thin layer of clayey SILT, often remarked as having an organic signature, was found underlying the Made Ground. This is thought to be a buried topsoil or organic subsoil.

During trial pitting, the soils were remarked as increasing in stiffness nearing rockhead. The firm to stiff and stiff over-consolidated glacial deposits should provide an allowable bearing capacity of 150 kN/m². Should higher bearing pressures be required, the alternative is to position the foundations on the shallow upper bedrock located at ca. 2.30 - 2.75 bgl (corresponding to 55m OD to 53.50m OD). The depth to rockhead falls to the south of the site where a layer of clayey COBBLES was first encountered from 3.0m (RC05 & RC06). South of Adamstown Avenue, the rock was cored between 4.30m and 4.50m depth bgl (ca. 55m OD). Extending foundations to this depth would likely require excavate and replace with low grade concrete from deep rockhead depths to base of foundation.

Stiff to very stiff dark grey black, bluish black, occasionally dark brown sandy gravelly CLAY was documented towards the base of a number of trial pits. Where this was intercepted, shy of rockhead, allowable bearing capacities in the over-consolidated glacial till would rise to 200kPa. Given this layer's proximity to eventual rockhead, there is a possibility for water ingress which may promote water-softening in the clay.

If foundations are placed on the medium strong and strong argillaceous limestone this should be capable of safely supporting bearing pressures of 1250 to 1500 kN/m². However, given the inherent variability in rock mass strength and the potential for some localised variations in weathering grades, the poorer quality calcareous mudstone or shale (weak) must be carefully considered in terms of potential for differential settlement and long-term performance (the mudstone can be locally weathered to a very weak rock or stiff clay). For structural design purposes, it would be prudent to size foundation pads using a safe or allowable bearing pressure of 750 kN/m². The proviso with the above is that horizons or zones of weak mudstone or muddy limestone be removed and replaced with low grade concrete.

Foundations constructed on such variably weathered bedrock require careful examination by a suitably experienced (competent) geotechnical engineer or engineering geologist. Plate load tests

(minimum of 600mm diameter), if practical given dig depths, are particularly useful in evaluating performance under loading and deciding on a suitable formation depth. Foundation excavations are anticipated to reveal an irregular or saw-tooth profile with beds of strong limestone adjacent to very weak mudstone. This is not unusual in this area of north-west Dublin, hence the input and advice of a geotechnical engineer / engineering geologist during the foundation construction works.

6.3 Ground Bearing Slab

In order to support conventionally loaded ground bearing slabs, it is recommended that a firm (medium strength) formation is reached. It will therefore be necessary to remove any soft / low strength upper soils / Made Ground before placement of the hardcore layers. With reference to the pit findings, it is anticipated that stripping to depths of between 0.6 and ca. 1.40m bgl should be sufficient in most instances to reach firm soils. This is likely to fluctuate depending on localised thicknesses of Made Ground.

It is recommended that T0 Struc hardcore be used in conjunction with T1 hardcore and these should meet the requirements of Annex E SR21:2014+A1:2016. Proof rolling the formation (static rolling with roller having a mass per metre width of roll of not less 5400 kg) is advised to counteract disturbance or loosening due to the bulk excavation works. Under no circumstance should vibratory or dynamic rolling be used on the formation soils as this may lead to dilation where silt-dominant soils are present, producing characteristic 'cow-bellying'.

Imported granular fill 'hardcore' used in any foundation application or under concrete floor slabs should meet the requirements of Annex E of SR 21:2014+A1:2016. Both T0 and T1 hardcore fills should be rigorously tested (independent of the quarry source) to ensure that they meet the physical, durability, chemical and mineralogical characteristics as set out in the aforementioned Annex E of SR 21:2014+A1:2016. Independent testing on samples of the proposed source hardcore is strongly recommended in advance of the material being used on the site. As a minimum, particle size gradings, chemical tests (total sulphur and acid soluble sulphate) and simplified petrology are advised to screen the material and independently assess compliance with Annex E, SR21;2014+A1;2016.

Should the existing hardcore found on site (TP23-TP27) be assessed as being mudrock-containing (potentially pyritiferous mudrock), it would be recommended to remove the stone and stockpile separately for either disposal from site or for use under flexible pavements / berms. It would be important that the stone not be left lying in areas where is would ultimately be overlain by concrete floors or concrete footpaths.

6.4 Groundwater / Infiltration

As noted in Section 5.3 and listed in Table 1, shallow groundwater strikes between 1.0m and 2.0m depth were frequently observed in open excavations as seepages or as 'slow' ingress. Water intercepted in Made Ground was regarded as isolated, or localised perched seepages rather than representing actual water bodies. Intense water strikes were observed in slit trenches along existing service corridors. The 'rapid' water entry in three of the twenty-nine slit trenches serves to highlight the impermeability of the surrounding natural stratigraphy relative to the disturbed soils / permeable pipe surround. Shallow pits were not left open for a long duration to allow for natural water ingress / groundwater re-equilibration.

Water entry was observed in the drillholes during their construction, from 1.90m (54.57m OD) to 4.70m bgl (55.05m OD), generally associated with rockhead. Where strikes were not recorded, the levels of water dipped in the drillholes upon completion often mirrored that of the upper rockhead level. It should be noted that water levels measured in drillholes immediately upon completion can often be artificially heightened given the introduction of an air/mist flush during coring.

However, water monitoring in June and August 2024 at each of the six drillholes revealed the water levels settled just above the core commencement depths / rockhead.

Overall, based on the ground investigation findings, groundwater is likely to be found in or just above the uppermost bedrock. Groundwater flows here will be governed by fracture state and flows or ingress would be expected to occur along the more open joints or discontinuities. There is a strong likelihood that prominent or copious inflows will be uncovered at localised zones within the upper bedrock / weathered rockhead horizon. This is a well-known feature of the Calp Limestone bedrock in Dublin, where groundwater inflows occur or tend to concentrate along the more fractured beds or weathered zones.

Provision should be made for de-watering during excavation works and groundworks, especially where trenches or open cut areas are required below the glacial soil / bedrock interface. A combination of perimeter drains (open drains) connected to strategic sumps is expected to be used to control groundwater. As mentioned in Section 5.3, the potential does exist for there to be seasonal changes in groundwater level. The works were carried out during spring / early summer 2024. It may be the case that the various waterbodies at depth are subject to seasonal variations.

Soakaway tests were conducted on the site at seven locations. The tests were carried out in what were deemed to be both Made Ground CLAY soils (TP01, 04 & 07) and the natural firm and stiff overburden soils. The impermeable nature of the soils may account for the low infiltration rates obtained.

It is likely that such CLAY soils would not be suitable for conventional soakaways being classified as offering only low natural infiltration (Table 3).

Soakaway Test No.	Depth of Test (m bgl)	<i>f</i> (m/min)	f (m/sec)
SA01 (Cycle 1)	1.20	0.00461 m/min	7.68E -05 m/sec
SA01 (Cycle 2)	1.20	0.00074 m/min	1.24E -05 m/sec
SA02	1.50	0.00025 m/min	4.21E -06 m/sec
SA03	1.50	0.000077 m/min	1.28E -06 m/sec
SA04	1.50	0 m/min	0 m/sec
SA05	1.40	0 m/min	0 m/sec
SA06	1.40	0.00125 m/min	2.079E -05 m/sec
SA07	1.80	0.00112 m/min	1.866E -05 m/sec

Table 3 – Measured infiltration rates (f) expressed as exposed area (metre) per unit time (minute)

6.5 Slopes / Batters

A maximum slope angle of 1V to 1.5H (33°) should be possible for temporary batters constructed within the upper medium strength indigneous fine grained soils. A slope angle of 1V to 2H (26°) should be appropriate for long term batters in the same soils. Where deep excavation works are required in the superficial deposits, the use of trench box support is advised. In addition, the uppermost fine subsoils will be susceptible to softening and degradation and surface water or groundwater ingress can lead to a significant reduction in shear strength. Perched water can exist locally and this should be considered in risk assessments for excavations. This is especially true in layers of Made Ground. By the nature of their unconsolidated, unengineered placement, anthropogenic soils such as those observed on site are expected to be highly unstable.

If anticipated, excavations into uppermost rock should be assessed by a suitably qualified engineering geologist. The angle which freestanding faces in limestone bedrock can be cut to will be influenced by, among other factors, bed thickness and angle of bedding, discontinuty spacing, clay

infill and groundwater entry / seepage. Man-entry into any deep excavation should be appropriately assessed and an AF3 form completed. The AF3 form details the thorough examination of an open excavation as well as documenting daily worksite inspections.

Site operatives or personnel should not enter unsupported excavations and should be informed of potential risks. Where site operatives or engineering staff work in close proximity to temporary slopes or batters, these should be inspected and approved by a suitably experienced civil engineer, preferably with geotechnical experience. Where there is a risk of spalling of battered slopes, the use of a geogrid is recommended. The geogrid should be anchored at the top and bottom of the ridge face to contain particles such as gravel, cobbles and / or boulders that may become dislodged.

6.6 Pavement Construction

Twenty-one plate load tests were conducted at depths ranging 0.50m bgl to 0.90m bgl. The plate load test permits an assessment of the in-situ stiffness of the upper soil. The test results are reported in Appendix 4 and summarised in Table 4. The range of equivalent CBR values measured was 0.40% and 13.7% on the initial loading cycle (Cycle 1) and 0.6% - 18.8% on the reload cycle (Cycle 2). The reload cycle demonstrates modest improvement in performance of the subgrade following initial loading. It is likely that following excavation of the formation, that use of a smooth drum roller ahead of hardcore placement will deliver a similar improvement in subgrade performance.

Test No. (%)	Depth	CBR at Load Cycle (%)	CBR at Re-Load Cycle
CBR 01	0.50	26	18.8
CBR 02	0.50	2.6	4.7
CBR 02 CBR 03	0.50	2.3 2.4	3.4
	0.50		
CBR 04	0.50	3.0	4.3
CBR 05	0.50	1.6	4.2
CBR 06	0.50	0.4	0.6
CBR 07	0.70	2.3	4.9
CBR 08	0.50	1.5	6.3
CBR 09	0.50	1.3	1.5
CBR 10	0.90	2.7	4.6
CBR 11	0.50	13.7	18.7
CBR 12	0.50	2.3	5.0
CBR 13	0.50	1.9	4.4
CBR 14	0.50	2.1	4.2
CBR 15	0.50	4.9	6.5
CBR 16	0.50	2.6	5.8
CBR 17	0.60	1.3	2.2
CBR 18	0.50	3.3	10.0
CBR 19	0.50	3.6	9.7
CBR 20	0.50	1.7	12.5
CBR 21	0.50	8.5	11.9

Table 4 – Equivalent CBR % Values obtained in Plate Bearing Testing

In accordance with the Design Guidance for Road Pavement (HD 25-26/10:2010), the lower-end equilibrium CBR values should be used to determine capping layer thickness. Disregarding some plate test results where subgrade disturbance or the presence of Made Ground may have derived uncharacteristically lower results, a CBR design value of 2.5% should be adopted for these buried firm clay soils.

In the case of the test undertaken at CBR06, a CBR design value of <2% should be applied to the near surface soils (0.50m bgl) in their current state. It is possible that Made Ground exists at this location and so extraction and removal of same is recommended prior to road construction.

Ahead of road construction, and following compaction of the soils, a further set of plate testing (450 or 600mm diameter) should be undertaken to assess the improvement in stiffness of the formation. An improvement should see a reduction in the build-up of capping stone required. Alternatively, slightly deeper excavation may be necessary to locate a more resilient subgrade.

Assuming a design CBR value of 2.5% for the upper soils then a minimum 6F capping thickness of 400mm and a sub-base thickness (UGM) of 150mm is recommended to support the road pavements / car park. If or where very low strength subgrade occurs (CBR <1%) either geogrid reinforcement or the use of starter material (Class 6A / 6B) could be considered to provide a suitable foundation layer especially for access or haul / spine roads if they traverse low strength subgrades. Such a mechanically stabilized layer could consist of a layer of geogrid with 500 to 600mm of granular fill (well graded aggregate with maximum particle size of 75mm). Where geogrid is not utilized then approximately 500mm build-up of Class 6A / 6B starter layer material could be considered in conjunction with a capping layer (Class 6F capping in line with Series 600 of TII SRW). This should provide a satisfactory foundation layer to adequately support the pavement (150mm of unbound granular material (UGM) in accordance with Table 2.1 of CC-SPW-00800, TII August 2022). The aforementioned Class 6A / 6B material could be used in conjunction with ca. 300mm of 6F capping material. This should provide a robust foundation layer.

The time of year will play a role in sub-grade strength especially during winter or early Spring where heavy rainfall would cause degradation / wash-out of the formation. If there are particular concerns regarding the condition of the formation soils, then additional plate bearing tests should be considered during construction to verify or validate the stiffness / density of the formation soils and adequate capping thickness.

The durability of the capping material should be confirmed as capping will be exposed to the elements (especially if the works are undertaken during the winter / spring period). It is important that argillaceous sedimentary rocks (i.e. muddy limestone, calcareous mudstone, shale, etc.) are not used as capping or as a starter layer. These have high potential to give rise to degradation (i.e. poor durability and soundness) and slaking and therefore would not be suitable.

All granular fills / unbound granular mixtures (UGM) used in pavement construction should be tested and approved in advance of being used in pavement construction. They should meet the compositional, chemical and soundness requirements as prescribed in the TII publication entitled *Road Pavements – Unbound and Hydraulically Bound Mixtures* (CC-SPW-00800 – dated August 2022).

Compaction / Placement of imported granular fill or hardcore will need to achieve low air voids (<5%) and ensure that settlement is not an issue. The number of roller passes and mass per metre and width of roll should meet the guidelines in I.S. 888:2016 *Annex B: Compaction requirements for unbound mixtures Table B.1.* It is recommended to use a smooth drum roller (without vibration) with a mass per metre of roll of not less than 5400kg. Unbound mixtures should not be laid in layers greater than 150mm if using this compaction method.

6.7 Buried Concrete

The chemical analysis tests on natural soil samples (BRE SD1 analysis suite) show pH (2.5:1) values ranging from 8.3 to 9.6. The sulphate aqueous extract (SO₄) results from trial pit samples determined values of <10mg/l to 380mg/l. This would suggest the 'as-received' soil samples tested could be categorised as BRE Class DS-1.

Table C1 ACEC for greenfield sites in BRE SD 1 (2005) can be used in the selection and design of concrete. If mobile groundwater conditions prevail at the site and given the pH values obtained from the testing, then ACEC class AC-1^d would be expected to be appropriate for buried concrete in the soils. In line with I.S. EN 206-1:2013, concrete could be manufactured to Class XA1 where founded or positioned in the upper soils (Class XA1 being \geq 2000 and \leq 3000 SO₄²⁻ mg/kg).

In the absence of sulphate analysis conducted on the bedrock, should footings be extended to rock, the guidance given in IS EN 206;2013 (Concrete: Specification, Performance Production and Conformity) states that the most onerous value for a single chemical characteristic determines the concrete class. In terms of concrete manufacture to IS EN 206-1:2002, it would be prudent to have concrete manufactured to Class XA2 if founding in bedrock. This is advised on the knowledge of the argillaceous limestone and calcareous mudstone bedrock present in the Dublin Calp Limestone and potential for oxidation and sulphate attack.

6.8 Earthworks Testing

To evaluate the re-use properties of the upper soils, a programme of earthworks laboratory testing was conducted. This comprised CBR, Moisture Condition Value (MCV) and Dry Density / Moisture Content relationship. Bulk samples were acquired from trial pits excavated across the site with testing conducted on the material at their natural or 'as-received' moisture contents. Earthworks testing was undertaken on those samples listed in Table 5. Their respective depth intervals and soil descriptions are shown in the aforementioned table.

Explorato ry Hole No.	Sample Depth	Sample Description		
TP01	0.80	Brown slightly sandy, slightly gravelly, CLAY		
TP03	0.80	Brown sandy, gravelly, CLAY		
TP06	0.80	Brown slightly sandy, slightly gravelly, CLAY		
TP08	0.80	Brown sandy, gravelly, CLAY		
TP10	0.80	Brown slightly sandy, slightly gravelly, CLAY		
TP14	0.80	Brown slightly sandy, gravelly, CLAY		
TP16	0.80	Brown sandy, gravelly, CLAY		
TP17	0.80	Brown slightly sandy, slightly gravelly, CLAY		
TP19	0.60	Brown sandy gravelly SILT/CLAY		
TP24	1.20	Brown slightly sandy, slightly gravelly, CLAY		

The samples, ahead of being subject to reusability testing, each have their >20mm fraction removed. The resultant earthworks testing (on natural 'as-received' samples) produced laboratory CBR results

in the range 0.4 to 17.8% with MCV's of 1.2 to 11.8. Moisture contents ranged from 11 - 26%. Maximum dry densities were proven to range between 1.56 and 2.05mg/m³ at moisture contents of 14% to 17% (refer to Table 6).

The moisture contents in the 'native' CLAY/SILT are elevated (11-26%) when compared to the moistures at which the soils achieve their maximum dry density. Compaction tests revealed optimum moisture contents of 14-17%. This explains the occasionally low CBR % values, as well as the low MCV values, some of which demonstrate the soils to be wet of optimum. Overall, the testing suggests the bulk of the soils, if handled carefully, would be classed as acceptable for re-use as Class 2 materials (2C1 Stony Cohesive material – high fines content) in line with Series 600 TII SRW.

Hole No.	Depth	Lab CBR Value % (Moisture Content %)	MCV at Natural Moisture Content (Moisture Content %)	Dry Density / Moisture Content Relationship
TP01	0.80	4.0 (24)	8.3 (25)	Max Dry Density = 1.63mg/m ³ at 15.2% OMC
TP03	0.80	0.4 (19.7)	1.2 (20.3)	-
TP06	0.80	4.5 (14.7)	3.7 (18.5)	Max Dry Density = 1.90mg/m ³ at 12.7% OMC
TP08	0.80	3.7 (15.5)	7.3 (16.7)	-
TP10	0.80	13.1 (26.8)	5.9 (29.5)	Max Dry Density = 1.60mg/m ³ at 17.2% OMC
TP14	0.80	17.8 (11.6)	6.0 (14.8)	Max Dry Density = 2.05mg/m ³ at 6.2% OMC
TP16	0.80	12.6 (20.2)	11.8 (24.4)	-
TP17	0.80	1.0 (14.5)	8.7 (14.3)	Max Dry Density = 1.99mg/m ³ at 9.1% OMC
TP19	0.60	11.1 (22.8)	10.4 (22.7)	Max Dry Density = 1.68mg/m ³ at 14.2% OMC
TP24	1.20	11.5 (24.4)	10.6 (25.1)	Max Dry Density = 1.56mg/m ³ at 14% OMC

Table 6 - Summary Details of Laboratory Testing samples

Bold font = optimum and dry of optimum (8-14)

Given the occasionally very low and low MCV results (minimum MCV of 8 normally required for Class 2 soils) some of the soils could be modified and strengthened by the addition of lime / cement binders. Treatment with lime or lime / cement (soil stabilization) would increase MCV (limits of 8 to 12 advised) and CBR (15% recommended by plate load test method).

If the design makes provision for ground improvement or soil stabilization methods, then trial mix laboratory testing and a field demonstration trial (footprint of c. 10 x 10m) are advised. The key objective of a field trial would be to assess the performance of the modified soils with lime or lime / cement binders using earthwork plant. This would allow for in-situ testing (plate load, nuclear gauge, sand replacement and CBR mould samples) to measure CBR / stiffness, relative compaction (percentage degree of compaction) and air voids.

It is vital that if soil stabilisation process is chosen, that any soil stockpiles are graded and shaped so that surface water cannot collect or pond. Similarly, careful control of excavation, transporting,

stockpiling, placing and compaction is advised to ensure that degradation of the shallow soil deposits does not occur. This is extremely important as poor earthworks management would render the fine silty soils as unsuitable for re-use.

In summary, according to laboratory testing, without reworking / drying or modification with lime (calcium oxide), the natural, uppermost, surficial fine-grained clay/silt would be suitable for re-use. However, it is possible the addition of binders would be required to produce a consistently acceptable sub-formation layer (high strength Class 2 engineered fill with an MCV 8 to 14).

6.9 Waste Acceptance Criteria [WAC] & Environmental Testing

Soil samples were taken across a range of depths from trial pits. Samples were analysed for their compliance to the criteria set out in the 2002 European Council Decision (2003/33/EC). O'Callaghan Moran & Associates conducted a waste characterisation assessment of the samples in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015). This report, together with conclusions and recommendations, is presented in Appendix 9.

REFERENCES

- **1.0** BS 5930 (2015+A1:2020) Code of Practice for Site Investigation, British Standards Institution (BSI).
- 2.0 BS 1377 (1990) Methods of Testing of Soils for Civil Engineering Purposes, BSI.
- **3.0** Eurocode 7, Part 2: Ground Investigation & Testing (EN 1997-2:2007)
- 4.0 International Society of Rock Mechanics (ISRM) (1981). Rock Characterisation, Testing and Monitoring; ISRM Suggested Method. Oxford, UK: Pergamon Press.
- 5.0 Peck, R.B., Hanson, W.E., & Thornburn, T.H. (1974). Foundation Engineering, 2nd Edition. Wiley, New York.
- **6.0** Site Investigation Practice: Assessing BS 5930 (1986), Geological Society Special Publication, No. 2.
- **7.0** Stroud, M.A & Butler, F.G (1975) "The SPT and the Engineering properties of Glacial Materials". Proceedings of the Symposium on Engineering Behaviour of Glacial Materials, Birmingham
- 8.0 Terzaghi, K., Peck, R.B., & Mesri, G. (1996). Soil Mechanics in Engineering, 3rd Edition. New York, Wiley.
- **9.0** Tomlinson, M.J., & Boorman, R. (1986). Foundations Design and Construction. 5th edition

Appendix F : UISCE ÉIREANN STATEMENT of DESIGN ACCEPTANCE

Dieter Bester DBFL constuction Ormond House Ormond Quay Upper Dublin D07 W704

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

26 March 2025

Re: Design Submission for Clonburris, Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS24003031

Dear Dieter Bester,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Uisce Éireann has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before you can connect to our network you must sign a connection agreement with Uisce Éireann. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Uisce Éireann's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Uisce Éireann's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Uisce Éireann does not, in any way, render Uisce Éireann liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Uisce Éireann representative: Name: Alicia Ros Bernal Email: ailciarosbernal.bernal@water.ie

Yours sincerely,

Dermot Phelan Connections Delivery Manager

Stiúrthóirí / Directors: Niall Gleeson (POF / CEO), Jerry Grant (Cathaoirleach / Chairperson), Gerard Britchfield, Liz Joyce, Michael Nolan, Patricia King, Eileen Maher, Cathy Mannion, Paul Reid, Michael Walsh.

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a designated activity company, limited by shares. Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Dublin Office

Ormond House Upper Ormond Quay Dublin 7, Ireland D07 W704

+ 353 1 400 4000 info@dbfl.ie www.dbfl.ie

Cork Office

14 South Mall Cork, Ireland T12 CT91

+ 353 21 202 4538 info@dbfl.ie www.dbfl.ie

Galway Office

Odeon House 7 Eyre Square Galway, Ireland H91 YNC8

+ 353 91 33 55 99 info@dbfl.ie www.dbfl.ie

Waterford Office

Suite 8b The Atrium Maritana Gate, Canada St Waterford, Ireland X91 W028

+ 353 51 309 500 info@dbfl.ie www.dbfl.ie

